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1 Introduction

Modern general equilibrium models that analyze monetary policy are based on the assumption

that agents form expectations rationally about future economic outcomes. However, recent em-

pirical evidence suggests that real-world decision-making is subject to cognitive limitations and

inattention, which is not consistent with fully rational behavior (e.g., Coibion and Gorodnichenko,

2015; Coibion, et al., 2018; Kohlhas and Walther, 2021). This raises important questions for In-

flation Forecast Targeting (IFT) central banks in terms of how to conduct monetary policy in the

presence of myopic agents. Of particular importance concerns the suitability of the traditional

Taylor principle - where the nominal interest rate should respond more than inflation - to induce

macroeconomic stability by preventing the emergence of indeterminacy and sunspot equilibria.

While there is a large literature analyzing the stability properties of interest-rate policies under

rational expectations,1 to date there is little work exploring the implications of bounded rationality

for equilibrium determinacy. The goal of this paper is to fill this gap.

The model economy we consider is a tractable Two-Agent New Keynesian (TANK) model

featuring both financially constrained and unconstrained households. The former are non-savers

and live hand-to-mouth by consuming all their current wage income, whereas the latter are asset-

holders who can borrow and lend from financial markets. We follow Bilbiie (2008) and include

Limited Asset Market Participation (LAMP) since the empirical evidence suggests it is an impor-

tant feature of developed and emerging market economies.2 Differently from Bilbiie (2008), we

assume that agents exhibit bounded rationality. There are many different ways bounded rational-

ity can be introduced into New Keynesian-type models.3 We initially adopt the popular cognitive

discounting approach of Gabaix (2020) by assuming that agents discount future deviations from

the deterministic steady state.4 This captures the idea that behavioural agents are less attentive

than rational agents to events that will take place in the distant future. However, we test the

robustness of our results by introducing myopia following Angeletos and Lian (2018), where the

1See, e.g., Bullard and Mitra (2002), Woodford (2003), Llosa and Tuesta (2009), Kurozumi and Van Zandweghe
(2010), Airaudo and Zanna (2012), Buffie (2013), McKnight and Mihailov (2015), Levine et al. (2025).

2Aguiar et al. (2020) estimate that approximately 40% of US households are non-savers. The share of non-saving
households is estimated to be potentially much higher in smaller developed countries (e.g., Canada and Japan) and
emerging market economies. For further details, see Buffie (2013), Buffie and Zanna (2017) and Levine et al. (2025).

3E.g., cognitive discounting is introduced in Angeletos and Lian (2018) by allowing for imperfect common knowledge,
whereas in Gabaix (2020) it arises from macroeconomic inattention. Farhi and Werning (2019) and Garćıa-Schmidt
and Woodford (2019) introduce myopia via level-k reasoning, whereas Woodford (2019) and Woodford and Xie
(2022) impose finite-horizon planning.

4Due to its tractability, the Gabaix (2020) approach is commonly used to introduce bounded rationality in the
optimal monetary policy literature. See, e.g., Benchimol and Bounader (2023), Wagner et al. (2023), Bonciani and
Oh (2025).

2



additional discounting of behavioural agents arises due to deviations from common knowledge.

Consistent with the empirical evidence, the central bank adjusts the policy rate in response to

changes in expected future inflation.5

The structural equations of our TANK model can be reduced to a two-dimensional dynamic sys-

tem comprised of behavioural versions of the New Keynesian Phillips Curve (NKPC), representing

the supply side of the economy, and an intertemporal Euler (or IS) equation which characterizes

the demand side. If the degree of LAMP exceeds a threshold level, the slope of the IS equation

changes sign, and monetary policy is transmitted according to an ‘Inverted Aggregate Demand

Logic’ (IADL), where aggregate demand responds positively to increases in the real interest rate.6

As shown by Bilbiie (2008), in this case an inverted Taylor principle is needed to induce de-

terminacy of the Rational Expectations Equilibrium (REE). We show that bounded rationality

introduces discounting into both the IS equation and the NKPC, as both aggregate demand and

inflation become less forward-looking. Myopic firms affect the slope of the long-run NKPC, where

discounting increases the long-run inflation elasticity of output. Myopic households affect how

future changes in the real interest rate are discounted, reducing their effect on current output from

the IS equation. The central message of our paper is that this discounting channel significantly

alters the conditions for equilibrium determinacy, and key monetary policy prescriptions obtained

under rational expectations do not carry over to frameworks with myopic agents.

Our main findings are summarized as follows. For economies with high asset market partic-

ipation rates, the traditional Taylor principle, where the central bank adopts an ‘active’ policy

stance, is no longer a necessary condition for determinacy under bounded rationality. By modify-

ing the Taylor principle, cognitive discounting exerts a stabilizing effect on the economy, such that

the long-run nominal interest rate no longer has to rise by proportionally more than permanent

increases in inflation. Consequently, under the behavioural Taylor principle, a ‘passive’ policy can

also be consistent with equilibrium determinacy. The stabilizing benefits are shown to larger as the

degree of agent inattention and asset market participation rate increase, and as prices become more

sticky in the economy. However, the scope for active policy is restricted by an upper bound on the

forward-looking Taylor coefficient, which is reduced as the degree of agent myopia increases. The

indeterminacy problem of active policy is found to be particularly serious as prices in the economy

5For further discussion, see McKnight and Mihailov (2015) and the references therein.
6Intuitively, the IADL arises in LAMP economies when the increase in firm profits from higher real interest rates
dominates the lower real wages induced by the intertemporal effects of delayed consumption, resulting in higher
aggregate demand as income is redistributed towards unconstrained households.
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become more flexible, and under nominal illusion, where the real interest rate is also incorrectly

perceived by households.7

In LAMP economies, the inversion of the Taylor principle is no longer a necessary condition for

equilibrium determinacy when agents are not fully rational. We show that the discounting channel

exerts a strong stabilizing effect in the presence of the IADL, such that determinacy can now also

be induced under an active policy. Indeed, the determinate policy space under the traditional

Taylor principle is potentially large with high degrees of LAMP and sticky prices, typical features

of many less developed countries (e.g., Buffie and Zanna, 2017).

We examine the robustness of our findings for a variety of popular IFT feedback rules that also

include a policy response to output. For both forward-looking and hybrid Taylor-type rules, the

ability of the Taylor principle to induce determinacy in high-participation economies is once again

reduced relative to the REE benchmark, whereas myopia significantly expands the determinacy

regions under active and passive policy in IADL economies. We also investigate the determinacy

implications of a contemporaneous Taylor rule which responds to current inflation. In contrast

to forecast-based rules, due to the absence of an upper bound on the Taylor coefficient, cognitive

discounting now exerts a stabilizing influence in both LAMP and non-LAMP economies.

Finally, we consider whether our results generalize by extending the baseline TANK model in

two important directions. First, we consider an alternative model of bounded rationality, where

cognitive discounting emerges due to deviations from common knowledge. In stark contrast to

the macroeconomic inattention model, the upper bound on the forward-looking Taylor coefficient

shifts outwards under imperfect common knowledge, increasing the region of determinacy under

the Taylor principle for high-participation economies. However, the stabilizing benefits of cognitive

discounting for IADL economies is now significantly reduced. Second, we introduce a supply-side

effect of monetary policy (the so-called ‘cost channel’) by allowing nominal interest rate changes to

directly affect the real marginal cost of firms. Regardless of the degree of asset market participation,

cognitive discounting is shown to play a key stabilizing role in ameliorating the indeterminacy

problem that emerges under REE from the cost channel.

This paper contributes to an important literature that considers the local stability of forecast-

based interest rate policy. Using the standard (full-participation) NK model, Bullard and Mitra

(2002) show that the Taylor principle is constrained under IFT rules, as indeterminacy of REE

7Nominal illusion arises when (unconstrained) households only have access to a nominal savings market. See Gabaix
(2020), for further discussion.
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can arise if central banks react too aggressively to expected future inflation. The presence of a

cost-channel of monetary policy arising from working capital loans (e.g., Llosa and Tuesta, 2009),

labor market search and matching frictions (e.g., Kurozumi and Van Zandweghe, 2010), or real

balance effects (e.g., McKnight and Mihailov, 2015), increases the severity of the indeterminacy

problem. We show that bounded rationality can worsen the indeterminacy problem of forecast-

based monetary policy in economies with high asset market participation rates, whereas it helps

mitigate the destabilizing effects that arise under the cost channel. For LAMP economies, Bilbiie

(2008) finds that determinacy becomes impossible under the Taylor principle and IFT central

banks are required to adopt the inverted Taylor principle. Buffie (2013), however, shows that the

traditional Taylor principle can be restored when real wages adjust gradually to clear the labor

market. We find that bounded rationality exerts a large stabilizing effect on LAMP economies,

such that determinacy can also be restored under the Taylor principle without resorting to real

wage rigidities.

This paper also closely relates to a recent literature that explores the implications of bounded

rationality for the design of monetary policy. It has been established by Angeletos and Lian

(2018), Gabaix (2020), and Woodford and Xie (2022), among others, that introducing bounded

rationality into NK models can help resolve the ‘forward guidance puzzle’ of Del Negro et al.

(2023). Focusing on contemporaneous interest-rate rules, Gabaix (2020) also shows that cognitive

discounting exerts a stabilizing effect in a full-participation model by reducing the likelihood of

indeterminacy. In contrast, we find that determinacy can actually be undermined when agents

are not fully rational, under empirically-appealing forecast-based rules that are of most interest to

policymakers. Moreover, we further show that different models of bounded rationality, by altering

the behavioural NKPC and IS equations, can generate contrasting policy prescriptions for avoiding

indeterminacy.

Finally, this paper is also related to a literature that investigates the conditions under which

forecast-based policy can induce learning (or E-stablility) of the REE. Bullard and Mitra (2002)

show that the Taylor principle yields a unique E-stable REE, whereas both Llosa and Tuesta (2009)

and Kurozumi and Van Zandweghe (2012) find that an indeterminate E-unstable REE can arise

in the presence of a cost channel. However, in our framework behavioural agents do not learn, and

consequently, convergence to the REE is never possible under cognitive discounting.

The rest of the paper is organized as follows. Section 2 outlines the behavioural model un-
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der LAMP and the main results from the determinacy analysis are given in Section 3. Section

4 discusses the determinacy implications of cognitive discounting under different timing specifi-

cations for the interest-rate rule. Section 5 examines the robustness of our results to changes in

the modelling environment by considering an alternative model of bounded rationality, the role

of nominal illusion, and the inclusion of a cost-channel of monetary policy. Finally, Section 6

concludes. Proofs and additional results are given in an online appendix.

2 The LAMP model under bounded rationality

We introduce cognitive discounting, or myopia, into the influential LAMP model of Bilbiie (2008).

Following Gabaix (2020), behavioural agents are not able to perfectly measure expected events

in the future: the further into the future an event is, the less accurate agents are in measuring

the event. In what follows, let Et denote the rational expectation operator and EBRt denote the

behavioural expectation operator. With behavioural agents, the state vector Xt with mean X∗ is

assumed to evolve according to the following log-linearized law of motion:

Xt+1 = (1−m)X∗ +m (ΓXt + εt+1) , (1)

for some matrix Γ and innovations εt+1. The parameter m ∈ [0, 1] is the cognitive discounting

parameter. Under rational expectations, m = 1, and the rational law of motion collapses to

Xt+1 = ΓXt + εt+1. It follows from Lemma 1 of Gabaix (2020) that for any variable Z(Xt), the

beliefs of the behavioral agent for k ≥ 0 satisfy:

EBRt [Z(Xt+k)−X∗] = mkEt[Z(Xt+k)−X∗], (2)

where EBRt uses the misperceived law of motion (1) and Et uses the rational law of motion. Letting a

variable with a hat Ẑt denote the log-deviation from its steady state Zss
(

i.e., Ẑt = lnZt − lnZss
)

,

it follows from (2) that:

EBRt Ẑt+k = mkEtẐt+k. (3)

Behavioural agents discount deviations from the steady state by the cognitive discount factor mk.

For events that are expected to occur further in the future at horizon k, this results in smaller

deviations from the steady state than under rational expectations.
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2.1 Households

There are two types of households. There exists a proportion of constrained households λ ∈ (0, 1),

denoted by the subscript H, and a proportion of unconstrained behavioral households 1−λ, denoted

by the subscript S. Constrained households hold no assets and have no access to financial markets.

Consequently, they consume CH,t only from income obtained from supplying labor NH,t:

CH,t = wtNH,t, (4)

where wt denotes the real wage. In contrast, unconstrained households can purchase one-period

nominal risk-free bonds Bt, which pay the (gross) interest rate Rt, and receive an equal share

1/(1−λ) of real profit income Dt from firm ownership. Letting Pt denote the aggregate price level,

the period budget constraint of unconstrained households is given by:

Bt + PtCS,t = Rt−1Bt−1 + PtwtNS,t +
PtDt

1− λ
. (5)

For both household types j = {H,S}, preferences are assumed to be separable between consump-

tion Cj,t and labor supply Nj,t:

u(Cj,t, Nj,t) =
C1−σ
j,t

1− σ
−
N1+ϕ
j,t

1 + ϕ
, (6)

where σ > 0 measures the inverse of the elasticity of intertemporal substitution and ϕ > 0 is the

inverse of the labor supply elasticity.

The first-order condition (expressed in log deviations from the steady state) for constrained

households is:

ϕN̂H,t = ŵt − σĈH,t. (7)

Combining the log-linearized version of (4) with (7) yields the following solution to the constrained

households problem:

N̂H,t = ηŵt, ĈH,t = (1 + η)ŵt, where η ≡ 1− σ
σ + ϕ

. (8)

For a representative unconstrained behavioural household, maximizing (6) with respect to (5)
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and log-linearizing around the steady state yields the following optimality conditions:

ϕN̂S,t = ŵt − σĈS,t, (9)

EBRt ĈS,t+1 = ĈS,t +
1

σ

(
R̂t − Etπ̂t+1

)
, (10)

where π̂t+1 ≡ P̂t+1 − P̂t denotes the (gross) inflation rate assuming a zero inflation steady state

(i.e., πss = 1). We initially follow Gabaix (2020) and assume that unconstrained households make

saving decisions from (10) at a guaranteed real interest rate, R̂t −Etπ̂t+1. In section 4.1, we relax

this assumption and allow for nominal illusion, where future inflation is not correctly perceived by

behavioural households (i.e., R̂t − EBRt π̂t+1).

2.2 Firms

The economy is comprised of a continuum of monopolistically competitive firms each indexed by

i ∈ [0, 1] who produce differentiated products Yt(i) using the technology:

Yt(i) = Nt(i)− F, (11)

where F is a fixed cost assumed to be equal across all firms. Given competitive wages, cost

minimization implies that real marginal cost m̂ct equals the real wage:

m̂ct = ŵt. (12)

Following Calvo (1983), in each period there is a constant probability 1− θ that a firm will be

randomly selected to adjust its price. Otherwise, the firm will keep the price fixed. The objective of

a behavioural firm i faced with resetting its price at time t is to choose P ∗t to maximize discounted

nominal profits:
∞∑
j=0

θjEBRt [Λt,t+j (P ∗t Yt+j(i)− Pt+jmct+jYt+j(i))] ,

subject to the demand constraint:

Yt+j(i) =

(
P ∗t
Pt+j

)−ε
Yt+j ,

where ε > 1 is the elasticity of substitution across goods and Λt,t+j denotes the stochastic discount
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factor, which in the steady state equals the subjective discount factor Λss = βj . The optimal price,

expressed in log deviations from a zero inflation steady state, is given by:

P̂ ∗t = (1− θβ)

∞∑
j=0

(θβ)
j

EBRt

[
m̂ct+j + P̂t+j

]
, (13)

and the aggregate price level is:

P̂t = θP̂t−1 + (1− θ)P̂ ∗t , (14)

⇒ π̂t = (1− θ)
(
P̂ ∗t − P̂t−1

)
. (15)

2.3 Monetary policy

Monetary policy is specified as an interest-rate feedback rule in which the nominal interest rate is

a function of expected future inflation and contemporaneous output:

R̂t = µπEtπ̂t+1 + µyŶt, (16)

where µπ, µy ≥ 0 are the inflation and output response coefficients, respectively. Our motivation

for considering a hybrid Taylor rule of the form (16) is twofold. First, due to the widely observed

time lags in the transmission of monetary policy (see, e.g., Batini and Haldane, 1999), many

central banks set the nominal interest rate in response to expectations of future inflation. Second,

as discussed by McKnight and Mihailov (2015), there is sizable empirical evidence to suggest that

real economic activity is used to help forecast inflation. We assume throughout that the central

bank does not suffer from myopia.

2.4 Market clearing, aggregation and equilibrium

Defining aggregate output, Yt =
(∫ 1

0
Yt(i)

ε−1
ε di

) ε
ε−1

, and aggregate employment, Nt =
∫ 1

0
Nt(i)di,

aggregating the production function (11) yields:

Ŷt = (1 + µ)N̂t, (17)

where we follow Bilbiie (2008) and set F ss/Y ss equal to the steady state net markup µ = (ε−1)−1,

implying that profits are zero in steady state. Consequently, in the steady state the household
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budget constraints (4) and (5) are the same, and steady-state consumption and labor supply will

be equal for both household types (an equitable steady state).

Labor market clearing requires:

N̂t = λN̂H,t + (1− λ)N̂S,t, (18)

and aggregate consumption Ct can be expressed as:

Ĉt = λĈH,t + (1− λ)ĈS,t. (19)

Aggregate real firm profits Dt is given by:

Dt =

∫ 1

0

Dt(i)di = Yt − wtNt.

Eliminating Dt from (5), imposing the bond market clearing condition Bt = 0, and using (18) and

(19), yields the goods market clearing condition:

Ŷt = Ĉt. (20)

Equilibrium For the variables {Ĉt, ĈH,t, ĈS,t, N̂t, N̂H,t, N̂S,t, Ŷt, R̂t, ŵt, m̂ct, π̂t, P̂t, P̂ ∗t },

the system of equilibrium conditions is summarized by the log-linearized equations given in (8)–(10)

and (12)–(20).

2.5 Local equilibrium dynamics

The system of log-linearized equilibrium conditions can be reduced to a two-dimensional system

of difference equations comprising of a behavioural IS equation and a behavioural New Keynesian

Phillips Curve (NKPC). To derive the behavioural IS equation first combine conditions (17) and

(18) with (8) and (9) to obtain:

N̂S,t =
1

[1− λ(1− ηϕ)]

Ŷt
(1 + µ)

− ηλσ

1− λ(1− ηϕ)
ĈS,t. (21)
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Next, combining (19) and (20), and using (8), (9), and (21) yields:

ĈS,t = δŶt, where δ ≡ 1−
(

λ

1− λ

)
ϕ(1− ηµ)

1 + µ
≷ 0. (22)

Using (22) to eliminate ĈS,t from the Euler equation (10) and noting that equation (3) implies that

EBRt ĈS,t+1 = msEtĈS,t+1, where ms ∈ [0, 1] is the degree of myopia of unconstrained households,

the following behavioural IS equation is obtained:

Ŷt = msEtŶt+1 −
1

σδ

(
R̂t − Etπ̂t+1

)
. (23)

Discounting arises in the IS equation with the presence of myopic households. Iterating equation

(23) forward yields:

Ŷt = − 1

σδ
Et

∞∑
j=0

(ms)
j
(
R̂t+j − Et+j π̂t+j+1

)
. (24)

Future changes in the real interest rate are discounted by a factor (ms)
j

and thus have smaller

effects on current output than changes in the real interest rate today.8

While the degree of constrained households λ is not important for the emergence of discounting

in (23), it does affect the slope of the behavioural IS equation, where the threshold is given by:

λ∗ =
1 + µ

1 + µ+ ϕ(1− ηµ)
. (25)

For λ < λ∗, δ > 0, and the IS equation is negatively sloped. This generates the standard aggregate

demand logic (SADL), where both output and consumption respond negatively to an increase

in the real interest rate. However, if λ > λ∗, δ < 0, and the IS equation is now positively

sloped. In this case we have an inverted aggregate demand logic (IADL), where output responds

positively to an increase in the real interest rate. With sufficiently low participation in the asset

market, the increase in firm profits from a higher real interest rate dominates the fall in real wages

induced by lower aggregate demand from the intertemporal effects of delayed consumption. This

redistribution from constrained to unconstrained households, results in an expansionary effect on

aggregate output.

8Under rational expectations (ms = 1), there is no discounting in (23). Therefore, future real interest rate changes
have the same effect on current output as a similar change in the interest rate today.
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To derive the behavioural NKPC, first rearrange the optimal price-setting condition (13):

P̂ ∗t − P̂t = (1− θβ)m̂ct + θβEBRt

[
P̂ ∗t+1 − P̂t

]
,

and using (14) and (15) yields:

θ

1− θ
π̂t = (1− θβ)m̂ct +

θβ

1− θ
EBRt π̂t+1. (26)

Next, it follows from equations (9) and (12) that:

m̂ct = ϕN̂S,t + σĈS,t = χŶt, (27)

where χ ≡ ϕ

[1− λ(1− ηϕ)](1 + µ)
+ σδ

[
1− ηλϕ

1− λ(1− ηϕ)

]
= σ +

ϕ

1 + µ
> 0,

after using (21) and (22) to eliminate N̂S,t and ĈS,t. Noting that (3) implies that EBRt π̂t+1 =

mfEtπ̂t+1, where mf ∈ [0, 1] is the degree of myopia of firms, it follows from (26) and (27):

π̂t = κχŶt + βmfEtπ̂t+1, where κ ≡ (1− θ)(1− θβ)

θ
> 0. (28)

Equation (28) is the behavioural NKPC, where the coefficient κ denotes the real marginal cost

elasticity of inflation, which is the same as under rational expectations.9 The long-run version of

(28) directly follows after eliminating the time subscripts and the expectation operator:

Ŷ ∗ = αmπ,yπ̂
∗, where αmπ,y ≡

1− βmf

κχ
. (29)

The long-run inflation elasticity of output, αmπ,y, determines the slope of the long-run NKPC,

∂Ŷ ∗/∂π̂∗ = αmπ,y, which is steeper under cognitive discounting compared to rational expectations.

2.6 Parameters used in the numerical examples

In the following sections, we derive analytical results investigating the implications of myopic agents

for equilibrium determinacy. It will also be insightful to illustrate our results numerically. Table 1

summarizes the parameter values used in the numerical examples. As is standard in literature, we

9Our derivation of the behavioural NKPC is in agreement with both Benchimol and Bounader (2023) and Meggiorini
(2023), and differs from Gabaix (2020) due to a methodological error. For further discussion, see Meggiorini (2023).
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Table 1: Baseline parameter values

β Subjective discount factor 0.99
ε Elasticity of substitution of differentiated goods 11
σ−1 Intertemporal elasticity of substitution in consumption 2
ϕ Inverse of the labor supply elasticity 2
θ Degree of price stickiness 0.75 or 0.5
κ Real marginal cost elasticity of inflation 0.086 or 0.505
λ Share of constrained households in IADL economy 0.5 or 0.7
ms Cognitive discounting by unconstrained households 0.85 or 0.5
mf Cognitive discounting by firms 0.8 or 0.5
µπ Inflation response coefficient µπ ∈ [0, 5]
µy Output response coefficient µy ∈ [0, 1]

set the (quarterly) discount factor β = 0.99, consistent with an annualized real interest rate of 4%,

and ε = 11 implying a markup of 10%. Following Bilbiie (2008), we set ϕ = 2 implying a Frisch

labor supply elasticity of 0.5. For the intertemporal elasticity of substitution in consumption σ−1,

values found in the literature typically range from 0.5 to 6.4. We follow McKnight (2018) and

choose a midway value of σ−1 = 2. For the degree of price stickiness, empirical estimates of θ

vary considerably. To adequately cover the range of empirical estimates, we consider two values

of θ = 0.5, 0.75. Setting θ = 0.75 constitutes an average price duration of one year, which is

roughly consistent with the estimates of Nakamura and Steinsson (2008) and implies a value for

the real marginal cost elasticity of inflation κ = 0.086. A lower value of θ = 0.5, consistent with

the estimates of Bils and Klenow (2004), implies prices are fixed on average for two quarters and

suggests a value of κ = 0.505. For the IADL economy, we follow Buffie (2013) and Buffie and

Zanna (2018) and consider two values for LAMP, λ = {0.5, 0.7}, consistent with the empirical

estimates for a number of developed and less developed countries.

For the myopic parameters ms and mf , as a benchmark we follow Gabaix (2020) and set mf =

0.8 and ms = 0.85, the latter implies that the half-life of (unconstrained) household attention is

one year. However, several recent Bayesian studies suggest that the degree of cognitive discounting

is likely to be much lower. Ilabaca et al. (2020) estimate mf = 0.41 and ms = 0.71, whereas Kolasa

et al. (2022) sets m = ms = mf and estimates a value of m = 0.53. Estimates by Meggiorini

(2023) suggest that m lies in the interval m ∈ [0.43, 0.62]. Consequently, we also consider a value

of 0.5 for both ms and mf . Finally, for the monetary policy coefficients µπ and µy, we search in

the range µπ ∈ [0, 5] and µy ∈ [0, 1] covering the vast majority of empirical estimates.
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3 Determinacy analysis

This section considers the issue of local equilibrium determinacy with behavioural agents. We

start by assuming that monetary policy takes the form of a strict inflation-targeting rule, where

the central bank responds only to expected future inflation, before considering a policy response

to output.

3.1 Strict inflation-targeting rule

Given the interest-rate rule R̂t = µπEtπ̂t+1, the behavioural IS equation (23), and the behavioural

NKPC (28), the minimal state-space representation of the model can be expressed as:

Etzt+1 = A1zt, zt =
[
Ŷt π̂t

]′
, A1 ≡

 1
ms −

κχ(µπ−1)
βδσmsmf

µπ−1
βδσmsmf

− κχ
βmf

1
βmf

 .
Proposition 1 If the interest-rate rule reacts to forward-looking inflation, the necessary and suf-

ficient conditions for equilibrium determinacy with behavioural agents are:

Case I: δ > 0, and 1− δσ(1−ms)(1− βmf )

κχ
< µπ < 1 +

δσ(1 +ms)(1 + βmf )

κχ
; (30)

Case II: δ < 0, and 1 +
δσ(1 +ms)(1 + βmf )

κχ
< µπ < 1− δσ(1−ms)(1− βmf )

κχ
. (31)

Proof. The determinant (det) and trace (tr) of the coefficient matrix A1 are:

detA1 =
1

βmsmf
> 1 and trA1 =

1

ms
+

1

βmf
− (µπ − 1)κχ

βδσmsmf
.

Since there are no predetermined variables, determinacy requires that both eigenvalues are outside

the unit circle. According to the Schur-Cohn criterion (see, e.g., LaSalle, 1986), this requires that

|trA1| < 1 + detA1, which implies Γ1 < µπ < Γ2 if δ > 0, and Γ2 < µπ < Γ1 if δ < 0, where

Γ1, Γ2 are given in (30) and (31). This completes the proof.

Using the baseline parameter values, Figure 1 plots the results of Proposition 1 for combinations

of the degree of LAMP (λ) and the monetary policy parameter µπ. The dashed lines illustrate the

determinacy regions under rational expectations (ms = mf = 1) and the red vertical line depicts

the threshold value of λ∗ above which the IADL holds. For standard SADL economies, a necessary

condition for determinacy under rational expectations is the so-called Taylor Principle (µπ > 1),
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(a) θ = 0.5; ms = 0.85, mf = 0.8 (b) θ = 0.5; ms = mf = 0.5

(c) θ = 0.75; ms = 0.85, mf = 0.8 (d) θ = 0.75; ms = mf = 0.5

Figure 1: Determinacy regions (grey areas) under a strict inflation-targeting rule. Parameter values are
β = 0.99, σ = 0.5, ϕ = 2, ε = 11. The dashed lines illustrate the regions of determinacy under rational
expectations. The red vertical line depicts λ∗ above which IADL holds.

where the central bank should adopt an ‘active’ policy stance. However, the central bank should

not react too aggressively to expected future inflation when prices are sufficiently flexible (θ = 0.5),

since the upper-bound on µπ is potentially binding. In stark contrast, the inverted Taylor principle

(µπ < 1) is required for IADL economies under rational expectations, where the central bank is

required to adopt a ‘passive’ policy stance to prevent indeterminacy.

Under cognitive discounting, some interesting findings emerge. First, determinacy can arise in

SADL economies even if the Taylor principle is violated, where the lower bound on µπ given in

(30) is increasing in ms and mf and decreasing in the degree of price stickiness θ. This region of

determinacy is largest in panel (d) of Figure 1 for the parameter combinations ms = mf = 0.5 and

θ = 0.75. Second, since the upper bound given in (30) is increasing in ms and mf and decreasing

in θ, indeterminacy is more likely to arise under the Taylor principle in SADL economies with

cognitive discounting and relatively flexible prices (see, e.g., panel (b) of Figure 1). Third, myopia

exerts a stabilizing effect in IADL economies, as determinacy can now also arise under the Taylor

principle. As illustrated by panel (d) of Figure 1, this region of determinacy is potentially large
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under sticky prices for λ > λ∗. In sum, cognitive discounting reduces the ability of the Taylor

principle to achieve determinacy in SADL economies but increases its ability in IADL economies.

For some intuition, consider a sunspot-induced increase in inflationary expectations. Under the

Taylor principle, the nominal interest rate R̂t rises by more than the increase in expected inflation

resulting in an increase in the real interest rate. In SADL economies, provided the central bank is

not overly aggressive in raising R̂t, real marginal cost and output fall under the Taylor principle,

which from the NKPC, exerts downward pressure on inflation contradicting the initial inflationary

belief. In LAMP economies, the conventional aggregate demand channel of monetary policy is

inverted, and real marginal cost and output increase under the Taylor principle. Consequently, in

response to higher expected inflation, the real interest rate falls under a passive policy (the ‘inverted

Taylor principle’) resulting in lower output and inflation. With myopic households (ms < 1),

however, discounting is now present in the IS equation as aggregate demand becomes less forward-

looking, and this discounting channel weakens the transmission mechanism of future monetary

policy on current outcomes. Using the interest-rate rule to eliminate R̂t from (23) yields:

Ŷt −msEtŶt+1 = −
(
µπ − 1

σδ

)
Etπ̂t+1. (32)

Consider a permanent increase in inflation π̂∗. From (29), this results in a permanent increase in

output Ŷ ∗ of αmπ,y ≡
1−βmf
κχ percentage units and it follows from the long-run version of (32):10

(1−ms)Ŷ ∗ = −
(
µπ − 1

σδ

)
π̂∗,

⇒ 1− σδ(1−ms)αmπ,y − µπ = 0, (33)

which is just the lower bound given in (30) with δ > 0 and the upper bound given in (31) with

δ < 0. In the event of a permanent rise in inflation, it is not necessary in SADL (IADL) economies

that the real interest rate increase (decrease) provided ms < 1, where the parameters mf and θ

both affect the long-run inflation elasticity of output αmπ,y. This is in stark contrast to the rational

expectations benchmark where the LHS of (32) is zero in the long run, and it directly follows that

a necessary condition for determinacy is µπ > 1 with δ > 0 and µπ < 1 with δ < 0.

In SADL economies, indeterminacy also arises under the Taylor principle when policy is ‘too

active’, whereas in IADL economies indeterminacy can arise by violating the lower bound given

10In the long run, Ŷt = EtŶt+1 = Ŷ ∗.
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in condition (31) when policy becomes ‘too passive’. Bounded rationality makes indeterminacy

more likely to happen in both these cases. For some intuition, we numerically solved the model

under indeterminacy using the Farmer-Khramov-Nicolo (2015) solution method. The impulse

response functions suggest that when monetary policy is overly aggressive in SADL economies,

sunspot shocks generate oscillatory behaviour for inflation π̂t > 0 > Etπ̂t+1 and output Ŷt >

0 > EtŶt+1.11 Since cognitive discounting reduces the attentiveness of behavioural consumers and

firms, smaller values of ms and mf reduce the weights of EtŶt+1 and Etπ̂t+1 in equations (23)

and (28), respectively. Consequently, π̂t > 0 and Ŷt > 0 can be more easily supported under

deflationary beliefs Etπ̂t+1 < 0, increasing the possibility of sunspot equilibria.

3.2 Reacting to output

We now consider the determinacy implications of a policy response to contemporaneous output.

Proposition 2 If the interest-rate rule reacts to expected future inflation and contemporaneous

output (16), the necessary and sufficient conditions for determinacy with behavioural agents are:

Case I: δ > 0, µπ +
1− βmf

κχ
µy > 1− δσ(1−ms)(1− βmf )

κχ
, (34)

and µπ < 1 +
1 + βmf

κχ
µy +

δσ(1 +ms)(1 + βmf )

κχ
; (35)

Case IIA: δ < 0, 0 < µy < −δσ(1− βmsmf ), (36)

and µπ +
1− βmf

κχ
µy < 1− δσ(1−ms)(1− βmf )

κχ
, (37)

and µπ > 1 +
1 + βmf

κχ
µy +

δσ(1 +ms)(1 + βmf )

κχ
; (38)

Case IIB: δ < 0, µy > −δσ(1 + βmsmf ), (39)

and conditions (34) and (35) are satisfied.

Proof. The model (16), (23), and (28) can be reduced to the following two-dimensional system:

Etzt+1 = A2zt, zt =
[
Ŷt π̂t

]′
, A2 ≡

 1
ms +

µy
δσms −

κχ(µπ−1)
βδσmsmf

µπ−1
βδσmsmf

− κχ
βmf

1
βmf

 .
11Similar oscillatory sunspot equilibria arise in IADL economies under a policy stance that is too passive.
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The determinate (det) and trace (tr) of the coefficient matrix A2 are:

detA2 =
1

βmsmf
+

µy
βδσmsmf

and trA2 =
1

ms
+

1

βmf
+

µy
δσms

− (µπ − 1)κχ

βδσmsmf
.

Since there are no predetermined variables, determinacy requires that both eigenvalues are outside

the unit circle. According to the Schur-Cohn criterion, this requires that (i) |detA2| > 1 and (ii)

|trA2| < 1+detA2. If δ > 0, detA2 > 1 is always satisfied, and 1+detA2−trA2 > 0 implies (34),

while 1 + detA2 + trA2 > 0 implies (35). If δ < 0, detA2 > 1 requires 0 < µy < −δσ(1−βmsmf )

and condition (ii) yields (37) and (38). Next note that detA2 < −1 requires µy > −δσ(1+βmsmf )

and δ < 0. Then |trA2| < −1− detA2 gives (34) and (35). This completes the proof.

In what follows, we refer to condition (34) as the behavioral Taylor principle for SADL economies.

This differs from the generalized (or long-run) Taylor principle derived by Bullard and Mitra

(2002) and Woodford (2003) under rational expectations, µπ + απ,yµy > 1, obtained by setting

ms = mf = 1 in (34), where απ,y ≡ 1−β
κχ > 0. The generalized Taylor principle implies that each

percentage point of permanently higher inflation results in a permanent increase in output of απ,y

percentage points. Consequently, determinacy requires that the long-run nominal interest rate

should rise by proportionally more than the increase in inflation. Since the subjective discount

factor β is calibrated to be very close to one, the trade-off between the policy parameters µπ

and µy is very weak under rational expectations (απ,y ≈ 0). In contrast, the presence of myopic

firms increases the long-run inflation elasticity of output, αmπ,y ≡ (1 − βmf )/κχ, implying that

the slope of the long-run behavioral NKPC (29) is relatively steeper than its rational expecta-

tions counterpart. In the presence of discounting in the behavioural IS equation (ms < 1), it is

no longer necessary for the long-run nominal interest rate to rise by proportionally more than a

permanent increase in inflation, and determinacy can therefore be achieved under a passive policy

provided (34) is satisfied. As illustrated in Figure 2, the myopic parameters and the degree of price

stickiness have two key implications for the determinacy boundary determined by the behavioral

Taylor principle (34). The lower the values of ms, mf and the higher the value of θ: (i) reduce the

vertical intercept term 1 − δσ(1−ms)(1−βmf )
κχ shifting the determinacy boundary downwards; and

(ii) increase the slope of the determinacy boundary, given by −αmπ,y, on the plane (µy, µπ). Similar

to the previous section, this mechanism helps to weaken the impact of future aggregate demand

changes on current outcomes, resulting in an increase in the determinacy region.

In contrast, it follows from condition (35) that the upper bound on the inflation response
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(a) θ = 0.5; ms = 0.85, mf = 0.8 (b) θ = 0.75; ms = 0.85, mf = 0.8

(c) θ = 0.5; ms = mf = 0.5 (d) θ = 0.75; ms = mf = 0.5

Figure 2: Determinacy regions (grey areas) with a policy response to output: SADL economy. Parameter
values are β = 0.99, σ = 0.5, ϕ = 2, ε = 11, λ = 0. Dashed lines illustrate the determinacy regions under
rational expectations.

coefficient is increasing in µy. Similar to the strict inflation-targeting policy of the previous section,

this upper bound is reduced under behavioural agents, increasing the indeterminacy region that

arises under the Taylor principle in SADL economies. By inspection of Figure 2, the net effect of

cognitive discounting for determinacy depends on the degree of price stickiness. For empirically

plausible combinations of the policy parameters (µy, µπ), the determinate policy space expands

under a high degree of price stickiness (θ = 0.75), whereas the net effect of myopic agents is to

shrink the determinate policy space when prices are more flexible (θ = 0.5).

For the IADL case, first note it follows from (36) and (39) of Case II of Proposition 2 that there

is an interval of µy where indeterminacy always exists: −δσ(1−βmsmf ) < µy < −δσ(1+βmsmf ),

regardless of the value of µπ. While the behavioral Taylor principle (34) is required in Case IIB, the

inverted behavioral Taylor principle (37) is necessary for Case IIA. Using the baseline parameter

values, Figures 3 and 4 illustrate the regions of determinacy and indeterminacy for two values

of LAMP, λ = 0.5, 0.7. Panels (a) and (b) of these figures graph Case II of Proposition 2 under

rational expectations (ms = mf = 1), while panels (c) and (d) illustrate the results under cognitive
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(a) λ = 0.5; ms = mf = 1 (b) λ = 0.7; ms = mf = 1

(c) λ = 0.5; ms = mf = 0.5 (d) λ = 0.7; ms = mf = 0.5

Figure 3: Determinacy regions (grey areas) with a policy response to output: IADL economy (θ = 0.5).

(a) λ = 0.5; ms = mf = 1 (b) λ = 0.7; ms = mf = 1

(c) λ = 0.5; ms = mf = 0.5 (d) λ = 0.7; ms = mf = 0.5

Figure 4: Determinacy regions (grey areas) with a policy response to output: IADL economy (θ = 0.75).

20



discounting setting ms = mf = 0.5. To satisfy Case IIA under rational expectations, the inverted

generalized Taylor principle, given by µπ + απ,yµy < 1, is a necessary condition for determinacy.

However, by inspection of panels (a) and (b), condition (36) can only be satisfied in this case

for very small values of µy. To satisfy Case IIB under rational expectations, central banks of

IADL economies should follow the generalized Taylor principle and be sufficiently aggressive in

their policy response to output in order to satisfy (39). However, by inspection of the figures, the

determinate policy space is small for λ = 0.5, and non-existent for λ = 0.7, regardless of the degree

of price stickiness. The presence of myopic agents significantly increase the regions of determinacy

for both Cases IIA and IIB. This difference is particularly stark under λ = 0.7 under both values

of price stickiness.12 These conclusions mirror the strict inflation-targeting policy findings of the

previous section; namely that cognitive discounting exerts a strong stabilizing effect on IADL

economies.

4 The timing of the interest-rate rule

In this section, we examine the robustness of our previous findings under alternative timing spec-

ifications for the Taylor rule. Specifically, we consider interest-rate feedback rules of the form:

R̂t = µπEtπ̂t+j + µyEtŶt+j . (40)

If j = 1, the Taylor rule is forward looking with respect to both inflation and output, whereas, if j =

0, the policy rule responds to contemporaneous inflation and output. Both of these specifications

for the interest-rate rule are often adopted in the determinacy literature.13

4.1 Forward-looking Taylor rule

Proposition 3 Under a forward-looking Taylor rule (setting j = 1 in eq. (40)), the necessary and

sufficient conditions for equilibrium determinacy with behavioural agents are:

12Since δ tends to minus infinity as λ→ 1, it follows that conditions (36) and (38) of Case IIA are always satisfied in
our numerical example under cognitive discounting after setting λ = 0.7. Consequently, determinacy requires that
the inverted generalized Taylor principle (37) holds.

13See, e.g., Bullard and Mitra (2002), Woodford (2003), Airaudo and Zanna (2012), McKnight and Mihailov (2015).
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Case I: δ > 0, 0 < µy < δσ

(
ms +

1

βmf

)
, (41)

and µπ +
1− βmf

κχ
µy > 1− δσ(1−ms)(1− βmf )

κχ
, (42)

and µπ < 1− 1 + βmf

κχ
µy +

δσ(1 +ms)(1 + βmf )

κχ
; (43)

Case II: δ < 0, 0 < µy < −δσ
(

1

βmf
−ms

)
, (44)

and µπ +
1− βmf

κχ
µy < 1− δσ(1−ms)(1− βmf )

κχ
, (45)

and µπ > 1− 1 + βmf

κχ
µy +

δσ(1 +ms)(1 + βmf )

κχ
. (46)

Proof. See online appendix A.

Both the standard and inverted versions of the behavioural Taylor principle remain unchanged

after replacing the explicit policy response to contemporaneous output with expected future output;

that is, equations (42) and (45) are identical to (34) and (37). Therefore, exactly as in section

3.2 a discounting channel arises under myopia, which shifts the determinacy boundary inwards

(outwards) in SADL (IADL) economies, expanding the region of determinacy. For the SADL

case, however, the upper bound on the inflation response coefficient given by condition (43) is now

decreasing in µy, such that determinacy becomes impossible under the behavioural Taylor principle

once the output response coefficient becomes sufficiently large: µy > δσ(1+ms)+κχ/(1+βmf ).14

As illustrated by Figure 5, indeterminacy is significantly more likely under a forward-looking Taylor

rule, and in contrast to the baseline hybrid rule (16), the determinacy regions shrink under myopic

agents even with a high degree of price stickiness (θ = 0.75).

As shown by Case II of Proposition 3, determinacy can no longer be supported in IADL

economies under the behavioural Taylor principle with a policy response to expected future output.

Figure 6 gives a graphical representation of the IADL case for two values of LAMP, λ = 0.5, 0.7,

setting the price stickiness parameter equal to 0.75.15 Under rational expectations, the determinacy

region associated with the inverted generalized Taylor principle is barely visible from panels (a)

and (b). Setting the values of the myopic parameters to be ms = mf = 0.5, panels (c) and (d)

show that with behavioral agents the determinacy region is now significantly increased. Therefore,

14While condition (41) also imposes an upper-bound on µy , this is non-binding within the interval µy ∈ [0, 1] using
our baseline parameter values under λ = 0.

15Note that condition (46) is always satisfied in this numerical example.
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(a) θ = 0.5; ms = 0.85, mf = 0.8 (b) θ = 0.75; ms = 0.85, mf = 0.8

(c) θ = 0.5; ms = mf = 0.5 (d) θ = 0.75; ms = mf = 0.5

Figure 5: Determinacy regions (grey areas) under a forward-looking Taylor rule: SADL economy (λ = 0).
Dashed lines illustrate the determinacy regions under rational expectations.

(a) λ = 0.5; ms = mf = 1 (b) λ = 0.7; ms = mf = 1

(c) λ = 0.5; ms = mf = 0.5 (d) λ = 0.7; ms = mf = 0.5

Figure 6: Determinacy (grey areas) under a forward-looking Taylor rule: IADL economy (θ = 0.75).
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while the determinate policy space is partially reduced under a forward-looking Taylor rule, cog-

nitive discounting continues to exert a strong stabilizing effect on IADL economies.

4.2 Contemporaneous-looking Taylor rule

Proposition 4 Under a current-looking Taylor rule (setting j = 0 in eq. (40)), the necessary and

sufficient conditions for equilibrium determinacy with behavioural agents are:

Case I: δ > 0, µπ +
1− βmf

κχ
µy > 1− δσ(1−ms)(1− βmf )

κχ
, (47)

Case IIA: δ < 0, κχµπ + µy < −δσ(1− βmsmf ), (48)

and κχ(µπ + 1) + µy(1 + βmf ) < −δσ(1 +ms)(1 + βmf ), (49)

and µπ +
1− βmf

κχ
µy < 1− δσ(1−ms)(1− βmf )

κχ
; (50)

Case IIB: δ < 0, κχµπ + µy > −δσ(1 + βmsmf ), (51)

and κχ(µπ + 1) + µy(1 + βmf ) > −δσ(1 +ms)(1 + βmf ), (52)

and µπ +
1− βmf

κχ
µy > 1− δσ(1−ms)(1− βmf )

κχ
. (53)

Proof. See online appendix B.

In stark contrast to forward-looking policy, cognitive discounting unambiguously exerts a sta-

bilizing effect on both SADL and IADL economies under a current-looking Taylor rule. While

the behavioural Taylor principle (47) remains exactly the same as before, in the absence of an

upper-bound on µπ, the determinacy region always expands with lower values of ms and mf in

the SADL case. This is consistent with the findings of Gabaix (2020).

For LAMP economies, Figure 7 illustrates Proposition 4 using the baseline parameter values

for two values of LAMP, λ = 0.5, 0.7, setting the price stickiness parameter equal to 0.5. In our

numerical example, Case IIA never applies under rational expectations, and a necessary condition

for determinacy is the generalized Taylor principle. While the Taylor principle achieves determinacy

with λ = 0.5 under rational expectations (panel (a)), for a higher value of LAMP, condition (52) can

only be satisfied in the interval µπ ∈ [1, 3] for values of µy greater than one (panel (b)). Cognitive

discounting has three important effects in expanding the regions of determinacy. First, the slope

of the determinacy boundary associated with the behavioral Taylor principle becomes significantly

steeper (panel (c)). Second, cognitive discounting enables condition (52) to hold under smaller
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(a) λ = 0.5; ms = mf = 1.0 (b) λ = 0.7; ms = mf = 1.0

(c) λ = 0.5; ms = mf = 0.5 (d) λ = 0.7; ms = mf = 0.5

Figure 7: Determinacy (grey areas) under a current-looking Taylor rule: IADL economy (θ = 0.5).

values of µy (panel (d)). Third, determinacy can also now arise under the inverted behavioral

Taylor principle (50) (panel (d)). Therefore, regardless if the Taylor rule is forward looking or

contemporaneous looking, cognitive discounting has a strong stabilizing effect on IADL economies.

5 Model extensions

In this section, we investigate the robustness of our results by relaxing some of the model assump-

tions. Specifically, we consider the determinacy implications of (i) the introduction of nominal

illusion; (ii) generating cognitive discounting using the imperfect common knowledge approach of

Angeletos and Lian (2018); and (iii) the inclusion of a cost-channel of monetary policy.

5.1 The role of nominal illusion

In the baseline model, the real interest rate in the Euler equation (10) is correctly perceived by

behavioural households. Following Gabaix (2020), we now assume that unconstrained households

only have access to a nominal savings market, where future inflation is perceived as EBRt π̂t+1 =
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ms
πEtπ̂t+1. Consequently, the behavioural IS equation (23) becomes:

Ŷt = msEtŶt+1 −
1

σδ

(
R̂t −ms

πEtπ̂t+1

)
. (54)

Under nominal illusion, the discounting channel is strengthened as expected future inflation is also

now discounted at rate ms
π < 1. The behavioral NKPC (28) remains unchanged.

The conditions for determinacy under a hybrid Taylor rule (16) are given in Proposition 7 of

the online appendix C. However, the determinacy effects of nominal illusion are most evident in

the absence of a policy response to output (i.e., setting µy = 0), where the local stability properties

of the model collapse to:

Case I: δ > 0, and ms
π −

δσ(1−ms)(1− βmf )

κχ
< µπ < ms

π +
δσ(1 +ms)(1 + βmf )

κχ
;

Case II: δ < 0, and ms
π +

δσ(1 +ms)(1 + βmf )

κχ
< µπ < ms

π −
δσ(1−ms)(1− βmf )

κχ
.

Relative to the ms
π = 1 baseline, nominal illusion results in a larger reduction in both the upper

and lower bounds on µπ given in Cases I and II above. For example, while the lower bound is less

likely to bind in SADL economies, expanding the determinacy region under a passive monetary

policy, the upper bound is more likely to bind reducing the determinacy region under the Taylor

principle. Figure 8 depicts the regions of (in)determinacy for combinations of λ and µπ setting

ms = mf = ms
π = 0.5. The dashed lines depict the determinacy regions in the absence of

nominal illusion (ms
π = 1). While the net effect on the determinate policy space is ambiguous

(a) θ = 0.5 (b) θ = 0.75

Figure 8: Determinacy regions (grey areas) under a strict inflation-targeting rule with nominal illusion.
Parameter values are β = 0.99, σ = 0.5, ϕ = 2, ε = 11, ms = mf = ms

π = 0.5. The dashed lines illustrate
the determinacy regions without nominal illusion (ms

π = 1). The red vertical line depicts λ∗ above which
IADL holds.
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for SADL economies, by reducing the determinacy region that arises under the Taylor principle,

it is unambiguously smaller for IADL economies. Therefore, the stabilizing effects of bounded

rationality on LAMP economies is reduced under nominal illusion.16

5.2 A behavioral LAMP model under imperfect common knowledge

Does the form of myopia that is introduced into the behavioral model matter for our results? To

answer this question, we replace the macroeconomic inattention approach of Gabaix (2020) and

instead introduce cognitive discounting due to deviations from common knowledge as in Angeletos

and Lian (2018). Letting α ∈ (0, 1] denote the degree of common knowledge, the behavioral

versions of the IS equation and NKPC curve under imperfect common knowledge are given by:17

Ŷt = ms
αEtŶt+1 −

1

σδ

(
R̂t − αEtπ̂t+1

)
, ms

α ≡ β + (1− β)α ∈ (β, 1], (55)

π̂t = κχαŶt + βmf
αEtπ̂t+1, mf

α ≡ θ + (1− θ)α ∈ (θ, 1]. (56)

In the behavioural IS equation (55), expected future output is discounted by ms
α ≈ 1 with β =

0.99, but similar to the case of nominal illusion discussed above, expected future inflation is also

discounted by a factor α. In (56), the slope of the behavioural NKPC is decreasing in α, and

both θ and α affect the effective discount factor of firms mf
α. The model collapses to the rational

expectations benchmark by setting α = 1.

Proposition 5 Under a hybrid Taylor rule (16), the necessary and sufficient conditions for equi-

librium determinacy with imperfect common knowledge are:

Case I: δ > 0, µπ +
1− βmf

α

κχα
µy > α− δσ(1−ms

α)(1− βmf
α)

κχα
, (57)

and µπ < α+
1 + βmf

α

κχα
µy +

δσ(1 +ms
α)(1 + βmf

α)

κχα
; (58)

16As shown in the online appendix C, similar conclusions are obtained if the policy rule also responds to output.
17In the absence of LAMP, equations (55) and (56) are in agreement with the structural equation system given in

Proposition 10 of the online appendix of Angeletos and Lian (2018).
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Case IIA: δ < 0, 0 < µy < −δσ(1− βms
αm

f
α), (59)

and µπ +
1− βmf

α

κχα
µy < α− δσ(1−ms

α)(1− βmf
α)

κχα
, (60)

and µπ > α+
1 + βmf

α

κχα
µy +

δσ(1 +ms
α)(1 + βmf

α)

κχα
; (61)

Case IIB: δ < 0, µy > −δσ(1 + βms
αm

f
α), (62)

and conditions (57) and (58) are satisfied.

Proof. See online appendix D.

First consider the SADL case. Condition (57) is the imperfect common knowledge version of

the behavioral Taylor principle. Similar to the macroeconomic inattention model, determinacy

arises under a passive monetary policy, where the long-run inflation elasticity of output (or slope

of the long-run NKPC) is now equal to
1−βmfα
κχα . Using the baseline parameter values, Figure 9 plots

the results of Case I of Proposition 5 for combinations of the policy parameters µπ and µy. We

consider two values of α = 0.5, 0.75, as justified by Angeletos and Lian (2018). The determinacy

boundary given by the behavioral Taylor principle (57) behaves very similar to its macroeconomic

inattention counterpart. The lower the value of α and the higher the value of θ, the larger the

determinate policy space that arises under a passive policy. The crucial difference between the two

behavioural models relates to the upper bound on µπ given by (58), which shifts outwards (relative

to the rational expectations baseline) with imperfect common knowledge, but shifts inwards under

macroeconomic inattention. This difference arises from the fact that α directly affects the slope

of the behavioral NKPC (56). As previously discussed, for sunspot equilibria to arise under an

active monetary policy requires π̂t > 0 > Etπ̂t+1. While a lower α reduces the weight of Etπ̂t+1

in (56), it also dampens its slope reducing the weight of Ŷt > 0. Consequently, π̂t > 0 is less

likely to be supported under deflationary beliefs Etπ̂t+1 < 0, reducing the possibility of sunspot

equilibria. Therefore, in stark contrast to the baseline results of section 3, forward-looking policy in

the absence of common knowledge unambiguously exerts a stabilizing effect on SADL economies.

For IADL economies, however, the stabilizing benefits of discounting are significantly reduced

under imperfect common knowledge. Figure 10 plots the determinacy regions for the two values

of α = 0.5, 0.75 and LAMP, λ = 0.5, 0.7, setting θ = 0.75.18 First, the determinate policy space

associated with the inverted behavioral Taylor principle (60) shrinks dramatically relative to the

18As shown in the online appendix D, very similar findings are obtained with a lower degree of price stickiness.
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(a) θ = 0.5; α = 0.75 (b) θ = 0.75; α = 0.75

(c) θ = 0.5; α = 0.5 (d) θ = 0.75; α = 0.5

Figure 9: Determinacy regions (grey areas) under a hybrid Taylor rule and imperfect common knowledge:
SADL economy. Parameter values are β = 0.99, σ = 0.5, ϕ = 2, ε = 11, λ = 0. Dashed lines illustrate the
determinacy regions under rational expectations.

(a) λ = 0.5; α = 0.75 (b) λ = 0.7; α = 0.75

(c) λ = 0.5; α = 0.5 (d) λ = 0.7; α = 0.5

Figure 10: Determinacy regions (grey areas) under a hybrid Taylor rule and imperfect common knowl-
edge: IADL economy (θ = 0.75).
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macroeconomic inattention model (see panels (c) and (d) of Figure 4). This arises because condition

(59) only holds for small values of µy. Second, for larger values of µy, determinacy requires

satisfying Case IIB of Proposition 5. Since the upper threshold (58) on µπ is relatively smaller

than its cognitive discounting counterpart, the determinate policy space is also reduced in this

case. Indeed, as shown in panels (b) and (d) of Figure 10, the determinacy region associated with

the behavioral Taylor principle (57) becomes non-existent when λ = 0.7, since to satisfy condition

(62) in our numerical example, requires an unrealistically large policy coefficient of µy > 2.94.

5.3 Bounded rationality and the cost channel of monetary policy

In the baseline model, monetary policy is transmitted by affecting aggregate demand. As a final

robustness check, we now introduce a second transmission channel of monetary policy, where

changes in the interest rate affect real marginal cost, and thus, the price-setting behaviour of

firms.19 Following Ravenna and Walsh (2006) and Llosa and Tuesta (2009), suppose that to

pay their wage bill all firms must borrow from competitive intermediaries at the nominal interest

rate Rt. Unconstrained households are assumed to receive profit income from both firms and

intermediaries. In terms of log deviations from the steady state, aggregate real marginal cost is

given by m̂ct = χŶt + R̂t. Consequently, in the presence of a cost channel, the behavioural NKPC

becomes:

π̂t = κχŶt + κR̂t + βmfEtπ̂t+1. (63)

The behavioural IS equation (23) remains unchanged.

Proposition 6 Under a hybrid Taylor rule (16), the necessary and sufficient conditions for equi-

librium determinacy with a cost channel of monetary policy are:

Case IA: 0 <
χ

σ(1 +ms)
< δ, 0 < µπ <

1− βmsmf

κms
+

1

δσκms
µy ≡ Γ1, (64)

and µπ +
1

κ

1− βmf − κ
χ− δσ(1−ms)

µy > 1− 1

κ

δσ(1−ms)(1− βmf − κ)

χ− δσ(1−ms)
; (65)

Case IB: 0 < δ <
χ

σ(1 +ms)
, conditions (64) and (65) are satisfied,

and µπ < 1 +
1

κ

1 + βmf + κ

χ− δσ(1 +ms)
µy +

1

κ

δσ(1 +ms)(1 + βmf + κ)

χ− δσ(1 +ms)
≡ Γ2; (66)

19This cost channel of monetary policy is strongly supported by the empirical literature. See, e.g., Chowdhury et al.
(2006), Ravenna and Walsh (2006), and Tillmann (2008), and the references therein.
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Case IIA: δ < 0, condition (64) is satisfied,

and µπ +
1

κ

1− βmf − κ
χ− δσ(1−ms)

µy < 1− 1

κ

δσ(1−ms)(1− βmf − κ)

χ− δσ(1−ms)
, (67)

and µπ > 1 +
1

κ

1 + βmf + κ

χ− δσ(1 +ms)
µy +

1

κ

δσ(1 +ms)(1 + βmf + κ)

χ− δσ(1 +ms)
; (68)

Case IIB: δ < 0, 0 < µπ < −
1 + βmsmf

κms
− 1

δσκms
µy ≡ Γ3, (69)

and conditions (65) and (66) are satisfied.

Proof. See online appendix E.

First note that for the parameter values used in the numerical analysis, Case IA of Proposition

6 never applies. Under rational expectations, the cost channel has two important implications

for the determinacy of SADL economies. First, condition (65) implies that the long-run inflation

elasticity of output 1−β−κ
κχ , and hence the slope of the long-run NKPC, is negative for empirically

realistic values of κ.20 Consequently, a permanent increase in inflation results in a permanent

fall in output and the central bank has to be more aggressive in reacting to inflation to prevent

indeterminacy: µπ > 1 + κ+β−1
κχ µy. Second, the upper-bound Γ1 on µπ given by condition (64) is

likely to bind especially for low values of µy.21 Similar to Llosa and Tuesta (2009), determinacy

becomes impossible in the presence of the cost channel after setting µy = 0: while condition

(64) requires a passive monetary policy, this contradicts the Taylor principle implied by (65).

Cognitive discounting dampens significantly the destabilizing effects of the cost channel. First,

as illustrated in panels (b)–(d) of Figure 11, the long-run inflation elasticity of output switches

sign and becomes positive once again. Second, the upper bounds Γ1 and Γ2 on µπ both increase

significantly, expanding the determinate policy space.22

Similar conclusions arise for IADL economies. Using the baseline parameter values, Figure 12

illustrates Cases IIA and IIB of Proposition 6 setting θ = 0.75. By inspection of panels (a) and

(b), the cost channel drastically shrinks the determinate policy space under rational expectations.

While determinacy can arise under the generalized Taylor principle (65) with λ = 0.5, in order to

satisfy the upper-bound Γ3 given by condition (69), a sufficiently large value of µy is required.23

20For example, setting β = 0.99 implies that 1− β − κ < 0 for all θ ≤ 0.9.
21Note that the cost channel results in indeterminacy of dimension two provided Γ1 < µπ < Γ2.
22Similar to the rational expectations benchmark, under our baseline parameter values the upper bounds Γ1 < Γ2 if
ms = 0.85 and mf = 0.8. However, the reverse holds and Γ2 < Γ1 with ms = 0.5 and mf = 0.5 under both values
of θ = 0.5, 0.75.

23Note that Γ1 < 0 for all µy > 0 with λ = 0.5 and thus Case IIA of Proposition 6 can only be satisfied in the absence
of a policy response to output, µy = 0.
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(a) θ = 0.5; ms = 0.85, mf = 0.8 (b) θ = 0.75; ms = 0.85, mf = 0.8

(c) θ = 0.5; ms = mf = 0.5 (d) θ = 0.75; ms = mf = 0.5

Figure 11: Determinacy (grey areas) under a hybrid Taylor rule and cost channel: SADL economy
(λ = 0). Dashed lines illustrate the determinacy regions under rational expectations.

(a) λ = 0.5; ms = mf = 1.0 (b) λ = 0.7; ms = mf = 1.0

(c) λ = 0.5; ms = mf = 0.5 (d) λ = 0.7; ms = mf = 0.5

Figure 12: Determinacy (grey areas) under a hybrid rule & cost channel: IADL economy (θ = 0.75).
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Under λ = 0.7, condition (68) is always satisfied within the parameter space (µπ, µy), and determi-

nacy requires satisfying the inverted generalized Taylor principle (67). However, the upper-bound

Γ1 given by (64) is very close to zero, rendering the equilibrium indeterminate for nearly all possi-

ble parameter combinations (µπ, µy). As highlighted by panels (c) and (d) of Figure 12, cognitive

discounting helps ameliorate the indeterminacy problem for IADL economies. Myopia expands the

upper-bound Γ1 increasing the determinacy region under the inverted generalized Taylor principle

for both values of λ. Moreover, by increasing the upper-bound Γ3, the determinate policy space

also expands significantly under the generalized Taylor principle for λ = 0.5 (panel (c)).

6 Conclusions

This paper has examined the implications of bounded rationality for equilibrium determinacy. Our

modelling framework includes limited asset market participation, which is an important feature of

many real-world economies, and focuses on forecast-based interest rate policy, which is empirically-

relevant for inflation targeting central banks.

Our main findings reveal that bounded rationality plays a crucial role in the ability of active and

passive policies to achieve determinacy in both SADL and IADL economies. Cognitive discounting

exerts a strong stabilizing effect in IADL economies, such that passive policy is no longer a necessary

condition for preventing indeterminacy, and determinacy can be restored under the traditional

Taylor principle. In SADL economies, determinacy is undermined with myopia under the Taylor

principle, whereas the determinacy region expands under a passive policy. Our results are shown

to be robust for a variety of strict and flexible inflation targeting rules that also respond to output.

Our baseline results suggest that the commonly-advocated use of the Taylor principle in SADL

economies, and the inverted Taylor principle in IADL economies, may be ill-advised. However,

it is important to stress that these policy prescriptions are a feature of adopting the popular

cognitive discounting approach of Gabaix (2020) and do not generalize to other bounded rationality

frameworks, such as the imperfect common knowledge model of Angeletos and Lian (2018). We

leave it to the empirical literature to determine which behavioral model the data prefers. One

practical conclusion that does appear to be robust and should be of interest to IFT central banks

relates to the indeterminacy problem that arises under a cost-channel of monetary policy. Bounded

rationality is shown to exert an important stabilizing role in both SADL and IADL economies by

helping to ameliorate the indeterminacy that arises from the cost-channel effect.
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Appendix: Proofs and Additional Results
(for online publication)

A Proof of proposition 3

The model equations (23), (28), along with the Taylor rule (40) with j = 1, can be reduced to the

following two-dimensional system:

Etzt+1 = A3zt, zt =
[
Ŷt π̂t

]′
, A3 ≡

 δσ
δσms−µy −

κχ(µπ−1)
βmf (δσms−µy)

µπ−1
βmf (δσms−µy)

− κχ
βmf

1
βmf

 .
The determinate and trace of the coefficient matrix A3 are:

detA3 =
δσ

βmf (δσms − µy)
and trA3 =

δσ

δσms − µy
+

1

βmf
− (µπ − 1)κχ

βmf (δσms − µy)
.

Since there are no predetermined variables, determinacy requires that both eigenvalues are outside

the unit circle. According to the Schur-Cohn criterion, this requires that (i) |detA3| > 1 and (ii)

|trA3| < 1 + detA3. If δ > 0, detA3 > 1 requires 0 < µy < δσms, and 1 + detA3 − trA3 > 0

implies (42), while 1 + detA3 + trA3 > 0 implies (43). Next note that detA3 < −1 requires

δσms < µy < δσ(ms + 1/βmf ) and |trA3| < −1 − detA3 implies (42) and (43). If δ < 0,

detA3 > 1 requires 0 < µy < −(δσ/βmf )(1 − βmsmf ) and condition (ii) implies (45) and (46).

Finally note that detA3 < −1 can never be satisfied under δ < 0. This completes the proof. �

B Proof of proposition 4

The model equations (23), (28), along with the Taylor rule (40) with j = 0, can be reduced to the

following two-dimensional system:

Etzt+1 = A4zt, zt =
[
Ŷt π̂t

]′
, A4 ≡

 1
ms +

µy
δσms + κχ

βδσmsmf
µπ
δσms −

1
βδσmsmf

− κχ
βmf

1
βmf

 .
The determinate and trace of the coefficient matrix A4 are:

detA4 =
1

βmsmf
+
κχµπ + µy
βδσmsmf

and trA4 =
1

ms
+

1

βmf
+

µy
δσms

+
κχ

βδσmsmf
.
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With no predetermined variables, determinacy requires that both eigenvalues are outside the unit

circle. According to the Schur-Cohn criterion, this requires that (i) |detA4| > 1 and (ii) |trA4| <

1 + detA4. If δ > 0, detA4 > 1 and 1 + detA4 + trA4 > 0 are always satisfied, and 1 + detA4 −

trA4 > 0 implies (47). If δ < 0, detA4 > 1 requires κχµπ +µy < −δσ(1− βmsmf ) and condition

(ii) implies (49) and (50). Next note that detA4 < −1 requires κχµπ + µy > −δσ(1 + βmsmf )

and δ < 0. Then |trA4| < −1− detA4 implies (52) and (53). This completes the proof. �

C Nominal illusion

Proposition 7 Under a hybrid Taylor rule (16), the necessary and sufficient conditions for equi-

librium determinacy with nominal illusion are:

Case I: δ > 0, µπ +
1− βmf

κχ
µy > ms

π −
δσ(1−ms)(1− βmf )

κχ
, (70)

and µπ < ms
π +

1 + βmf

κχ
µy +

δσ(1 +ms)(1 + βmf )

κχ
; (71)

Case IIA: δ < 0, 0 < µy < −δσ(1− βmsmf ), (72)

and µπ +
1− βmf

κχ
µy < ms

π −
δσ(1−ms)(1− βmf )

κχ
, (73)

and µπ > ms
π +

1 + βmf

κχ
µy +

δσ(1 +ms)(1 + βmf )

κχ
; (74)

Case IIB: δ < 0, µy > −δσ(1 + βmsmf ), (75)

and conditions (70) and (71) are satisfied.

Proof. The model equations (16), (28), and (54) can be reduced to:

Etzt+1 = Azt, zt =
[
Ŷt π̂t

]′
, A ≡

 1
ms +

µy
σδms −

κχ(µπ−msπ)
βδσmsmf

µπ−msπ
βδσmsmf

− κχ
βmf

1
βmf

 .
The determinate and trace of the coefficient matrix A are:

detA =
1

βmsmf
+

µy
βδσmsmf

and trA =
1

ms
+

1

βmf
+

µy
δσms

− (µπ −ms
π)κχ

βδσmsmf
.

With no predetermined variables, determinacy requires that both eigenvalues are outside the unit

circle, which requires that (i) |detA| > 1 and (ii) |trA| < 1 + detA. If δ > 0, detA > 1 is always
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satisfied, and 1 + detA− trA > 0 implies (70), while 1 + detA + trA > 0 implies (71). If δ < 0,

detA > 1 requires 0 < µy < −δσ(1− βmsmf ) and condition (ii) implies (73) and (74). Next note

that detA < −1 requires µy > −δσ(1 + βmsmf ) and δ < 0. Then |trA| < −1 − detA implies

(70) and (71). This completes the proof.

(a) θ = 0.5; λ = 0 (b) θ = 0.75; λ = 0

(c) θ = 0.5; λ = 0.5 (d) θ = 0.75; λ = 0.5

(e) θ = 0.5; λ = 0.7 (f) θ = 0.75; λ = 0.7

Figure A.1: Determinacy regions (grey areas) under a hybrid Taylor rule with nominal illusion. Pa-
rameter values are β = 0.99, σ = 0.5, ϕ = 2, ε = 11, ms = mf = ms

π = 0.5. The dashed lines illustrate
the regions of determinacy in the absence of nominal illusion (ms

π = 1).
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D The imperfect common knowledge LAMP model

D.1 Proof of proposition 5

The model equations (16), (55), and (56) can be reduced to:

Etzt+1 = A5zt, zt =
[
Ŷt π̂t

]′
, A5 ≡

 1
msα

+
µy

δσmsα
− κχα(µπ−α)

βδσmsαm
f
α

µπ−α
βδσmsαm

f
α

− κχα

βmfα

1

βmfα

 .
The determinate and trace of the coefficient matrix A5 are:

detA5 =
1

βms
αm

f
α

+
µy

βδσms
αm

f
α

and trA5 =
1

ms
α

+
1

βmf
α

+
µy

δσms
α

− (µπ − α)κχα

βδσms
αm

f
α

.

With no predetermined variables, determinacy requires that both eigenvalues are outside the unit

circle, which requires that (i) |detA5| > 1 and (ii) |trA5| < 1 + detA5. If δ > 0, detA5 > 1 is

always satisfied, and 1+detA5−trA5 > 0 implies (57), while 1+detA5+trA5 > 0 implies (58). If

δ < 0, detA5 > 1 requires 0 < µy < −δσ(1−βms
αm

f
α) and condition (ii) yields (60) and (61). Next

note that detA5 < −1 requires µy > −δσ(1 + βms
αm

f
α) and δ < 0. Then |trA5| < −1 − detA5

gives (57) and (58). This completes the proof. �

D.2 Determinacy under a strict inflation-targeting rule

Under a strict inflation-targeting rule, the necessary and sufficient conditions for determinacy with

imperfect common knowledge are given by:

Case I: δ > 0, and α− δσ(1−ms
α)(1− βmf

α)

κχα
< µπ < α+

δσ(1 +ms
α)(1 + βmf

α)

κχα
; (76)

Case II: δ < 0, and α+
δσ(1 +ms

α)(1 + βmf
α)

κχα
< µπ < α− δσ(1−ms

α)(1− βmf
α)

κχα
. (77)

Proof. After setting µy = 0, the two conditions (57) and (58) of Case I of Proposition 5 collapse

to (76). For Case IIA, condition (59) is always satisfed and the conditions (60) and (61) collapse

to (77). Since condition (62) can never be satisfied, Case IIB does not apply.
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(a) θ = 0.5; α = 0.75 (b) θ = 0.5; α = 0.5

(c) θ = 0.75; α = 0.75 (d) θ = 0.75; α = 0.5

Figure A.2: Determinacy regions (grey areas) under a strict inflation-targeting rule and imperfect
common knowledge. Dashed lines illustrate the determinacy regions under rational expectations.

(a) λ = 0.5; α = 0.75 (b) λ = 0.7; α = 0.75

(c) λ = 0.5; α = 0.5 (d) λ = 0.7; α = 0.5

Figure A.3: Determinacy regions (grey areas) under a hybrid Taylor rule and imperfect common knowl-
edge: IADL economy (θ = 0.5).
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E Proof of proposition 6

The model equations (16), (23), and (63) can be expressed as:

Etzt+1 = A6zt, zt =
[
Ŷt π̂t

]′
, A6 ≡

 δσ+µy
δσms −

κ(χ+µy)(µπ−1)
δσms(βmf+κµπ)

µπ−1
δσms[βmf+κµπ ]

− κ(χ+µy)
βmf+κµπ

1
βmf+κµπ

 .
The determinate and trace of the coefficient matrix A6 are:

detA6 =
1

ms (βmf + κµπ)

(
1 +

µy
δσ

)
and

trA6 =
1

ms

(
1 +

µy
δσ

)
+

1

βmf + κµπ
− κ (χ+ µy) (µπ − 1)

δσms (βmf + κµπ)
.

Determinacy requires that both eigenvalues are outside the unit circle, which requires that (i)

|detA6| > 1 and (ii) |trA6| < 1 + detA6. If δ > 0, detA6 < −1 is not possible, whereas

detA6 > 1 requires (64). It follows that |trA6| < 1 + detA6 can be reduced to:

[
1− δσ (1−ms)

χ

]
µπ +

(
1− βmf − κ

κχ

)
µy > 1− δσ(1−ms)(1− βmf )

κχ
, (78)

(1 +ms)(1 + βmf ) +
κχ

δσ
+
(
1 + βmf + κ

) µy
δσ

+ κ
(

1 +ms − χ

δσ

)
µπ > 0. (79)

Since δ ≤ 1, it follows that χ− δσ (1−ms) > 0, and (78) reduces to (65). If 1 +ms− χ
δσ > 0, then

(79) is always satisfied. Otherwise, an additional condition given by (66) is also required. If δ < 0,

detA6 > 1 requires (64) and condition (ii) implies (67) and (68). Next, detA6 < −1 requires

(69). Then |trA6| < −1− detA gives (65) and (66). This completes the proof. �
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