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INTRODUCTION. 

In markets with few sellers and inflationary environments, firms do not adjust 

their prices very frequently'. In some cases firms adjust their prices 

synchronically, and in others they do not . If firms face " '-fixed ' costa of 

ad'jus't;;;ent, Sheshinski and Weiss (1978) showed that a monopoly "w'il1' not adjust 
,~ . 

" , 
~.". ,; . ". its " prices continuously. The optimal policy will follow an Ss " rule. The 

;:.-- ' .' ~xtensio~ of th~ ~~alYSYS ' of this problem to .a market with few sellers has posed 

major., ' difficulties for economic research. I am not aware of' any ' theoretical 

development that studies the behavior of oligopolistic ·.firms whenever t"iiey face 

an inflationary process and have to pay a fixed cost ,each ,time they 'Want to 

adjust their prices . 

" .. 

'In fact, there are very few examples of models, with fixed ,cost ,of ' adjustmerits and 

changing environments in the operation resea;~ch literature, even for the single 

decision case. In economics, there has been two main approaches to model dynamic 

interaction with perfect information. On one hand we have the ' supergame 

literature, a modelling technique which studies a game that repeats itself each 

period and therefore assumes an unchanging environment. Because inflation 

changes the conditions of the game continuously, this technique is useless to 

model these kinds of problems. The second approach has , been ,the Markov Perfect 

Equilibrium method of solution . Within this latter approach, the most commonly 

used technique assumes that firms alternate in their moves. Maskin and Tirole 

(1988 (a» have argued that the aim of this method is to ,capture the "fdea of 

short run inaction. Of course, the alternating approach cannot model synChronous 

adjustments . Therefore, this technique is ineffective in trying to capture the 

" See Carlton' (1989) '. 

. ,..~ . 
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stylized facts of the real world. 

The aim of this paper is to characterize dynamic oligopolistic interaction wi~h 

fixed costs of adjustments in inflationary environments. The main .procedure for 

characterizing this rivalry is by solving the game in the computer . If the 

solution of the game existsZ, it lies in a functional space of infinite 

dimension. Because the computer cannot approximate the solution in an infinite 

dimensional space, I project the solution in a subspace of finite dimensione. 

As far as I am aw.are, this model constitutes the first dynamic theoretical 

approach which explains the rigidity of prices in markets with few seller. and 

inflationary environments. other explanations of the rigidity of prices 

undermine the allocational role of prices, and consider that firms will use other 

mechanisms to distribute goods (see Carlton (1989». I am not aware of a fully 

developed theoretical model along these lines. 

I will study a dynamic price competition model with differentiated goods and a 

constant rate of inflation . The firms maximize the present value of profits and 

have to decide when to adjust their prices, as well as , the amount of the change . 

Their strategies are assumed to depend on the state of the system, the real 

prices of the firms . In other words, I am looking for the Markov Perfect 

Equilibrium solution. 

~ .. ' 

Maskin and Tirole (1988 (a» have studied dynamic price competition in a duopoly 

setting with perfect substitutes . They analyze an alternating move game, and 

Z I am not aware of any existing proof in these _k; nd of games, see ehaptef"" 
two for a discussion of existing proofs _ In this QAap~er we check whether the 
approximate solution actually converges in the computer. 
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conclude that, in equilibrium, firms will either follow an Edgeworth cycle or 

" ke':'p their relative price unchanged . Both equilibria are possible in their game. 

Furthermore, they show the existence of trigger strategies that can sustain the 

monopoly outcome. Gertner (1986) extended Maskin and Tirole' s study to an 

alternating game in which firms have to pay a fixed cost (menu "cost) ' each time 

they want to change their prices. He proves that Markov strategies can sustain 

Eaton and Engers (1991) analyze the Maskin and Tirole (1988 (a)) 

model with differentiated goods. They show that equilibria depends" upon the 

degree of interaction . For low levels of interaction they show the existence of 

a "spontaneous equilibria" , in this equilibria the firms will have a steady state 

price that they will maintain even if it is undercut by the rival . For high 

levels of interaction they found a "disciplined equilibria" , the firms attain a " 

certain level of collusion which is supported by severe undercutting by the other 

firm if it were to break. 

"I"ii my model, alternating is not exogenously imposed; rather, the timing of 

adjustment is endogenously determined by modelling the source of inaction as a 

fixed cost . Inflation erodes real prices and firms pay a fixed cost every time 

they want to adjust their prices . 
:''':,. 

I will study the asymptotic behavior of the game by making simulations for 

various initial conditions . We will notice that synchronized behavior will be 

the most frequent outcome3• Nonetheless, alternating behavior cannot be ruled 

' .. ~. -
~ .. 

'. 
3 A property , ruled out by assumption in the alternat i'ng move approach . 
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out4• I will find out which of the different initial conditions will maximize 

the sum of the value functions of the players .• Hence, if f i rms can choose initial 

conditions, they may choose one pattern over the other. 

Sheshinski and Weiss (1990) have studied a decision theoretic approach to this 

problem in a continuous time environment . They study the two product 

monopoly5. They conclude that depending upon the cost structure and the 

behavior of the cross partial derivative in the one period return function, the 

monopoly may want to synchronize or not his two goods. 

There are important i9sues related with dynamic price competition in inflationary 

environments and menu costs : 

Many economies in the real world experience inflationary environments . In turn, 

these countries face non-trivial stabilization policies. The level of pain that 

these policies can· cause depends upon whether firms want to synchronize their 

prices . If firms choose not to synchronize prices, exogenous shocks lnay propagate 

over time (Blanchard (1983)) . When firms stagger their decisions there are two 

contrasting approaches to stabilization . In one school, if firms stagger prices, 

stabilization policy is possible (Taylor (1980)) . In contrast, in the second 

tradition , Caplin and Spulber (1987) have maintained that even if firms stagger 

their decisions uniformly and follow (S, s) rules, money may be neutral. A 

4 These results are reminiscent of those obtained by Haskin and Tiro1e 
(1988 (a)) . When firms have a kinked demand equilibrium in the Haskin and Tiro1e 
paper, they are in fact having a constant relative price. In this paper when 
firms choose to synchronized their adjustments, they are implictly choosing a 
constant relative price . 

5 The collusion case . 

.. 
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c,,~,?i_~l,, ~!,~\lm~tion in -the latter proof is that firms stagger ~niformly': Yet, 

Caplin and Sp~lber ignored the iss~e of' strategic interaction . They do not derive 

,t!'e, .. pricipg. beha,vior of f.irms from first principles; they assumed an SS pricing 

rule for each fi·rm with bandwiths invariant to changes in the rate of inflation . 
4 ,,' , ', _, • • • - . • ,. " ', - • 

.• ..r~ . a, s.1:rate,gic. envi.rQ.I!!1lent , the" infla,ti'on "level anI:! the behavi6i," of the 

, .' '?,o,m~et;,t9r ,"i,ill. ha)(!1 an impact on the level· at· which firmii want to "aci'j'us't their 

prices. If any of these two conditions change , the conclusion by Caplin and 

• Spulber will not follow anymore6 • When we take into account strategic 

considerations and calculate the behavior of the firm 'from first principles, 

these two factors change. 

, For ,policy making, .it ; is important to address the ' impa6t of inflationary. 

environments ·. for. . the, welfare . of both consumers 'and producers ' in" the industry . 

! . w~,ll try to. deal with t ,his .topic in a partial equilibrium context, by using the 

cons)llller ,u"plus and, producer surplus. I -- will ' calculate the highest ' level of 

c,onljumer . surplus over all the states and see · how it varies ' when the rate of 

" inflation cbanges . ,Thi,s is , I believe, ari n interesting measure of the costs of 

inf.lation n (Sh.eshinski and WeiSS (1978 n .' Additionally, I "ill "compare the game 

outcome with the one given by the collusion case and the social planner solution. 

T~e, res~lts ,of this comparison will furnish us with an idea of the impact On the 

producer' surplus of the costs of inflation. Finally, given that the synchronized 

outeo,me appeaJ.",s . to be the more robust result , I analyze how producer surplus 

6 More recently Caballero and Engel (1991), have extended the analysis of 
Capiin and Spulber to a monopolistic competitive environment with strategic 
complementarities. Howeve,r, they do not calculate the behavior of these firms 
from first principles . Rather, they use suboptimal rules, as caplin and Spulber 
they assume that the bandwiths in the Ss rules are invariant to changes in the 
"rate of inflation. 
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changes under the synchronized outcome, as the rate of inflation r ises . 

The firms face an intertemporal maximization problem in which they have to dec i de 

when to change their variables and the amount of the change . Since firms are 

competing with each other , today's decision taken by a firm will produce a 

response by a competitor tomorrow, the firm maki ng the choice today takes into 

account this fact . 

The following sections are organized in the following way : 

In section 1 I state the model. In section 2 I present the the pair of 

functional equations that has to be satisfied in order for the model to be a 

Markov Perfect Equilibria , I also sketch the main computational approach. In 

section 3 I discuss the functional form and the parameter values chosen to solve 

the game . We will see that the functional form is simple enough to allow me to 

speed up the calculations, as well as, flexible enough to permit me to vary 

degree of interaction between the firms . Since the utility function is known , 

I can calculate directly the objective function of the social planner. 

In section' 4 I present the results of t~e qame . First,I characterize the shape 

of the set in which the game will be played after the first move (the play set) . 

Then, I analyze whether there is a stable orbit in which the game converges after 

simulat i ng the game from various initial conditions. We will see that for most 

i nitial conditions and for most parameter values the game converges to a cycle 

of pr ice changes in which firms change their prices at equidistant moments of 

time, a l ways to the same level and in a synchronized fashion . In other words, 
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the firms will follow Ss policies, as in Sheshinski and Weiss ' (1990) . This 

result appears to be contingent on the prope·rty of strategic complementarities 
" , .. . .' . 

in the one period return function7 . Finally, I answer the question of what sort 

of initial conditions will the players choose if there are preplay negotiations, 

again the most reasonable outcome is that the firmo choose to follow Ss policies 

in a synchronized fashion. 

In section 5 I make comparative statics with respect to changes in the parameters 

of the model . Most of the results are congruent with those obtained by 

Sheshinski and Weiss (1978) and (1990). 

In section 6 I make comparisons with the collusi on case, the most distinguishing 

feature is that the collusion solution is more able to exploit the strategic 

complementarities between the two goods and therefore it allows the singla firm 

to save in fixed costs. 

In section 7 I make welfare analysys from a partial equilibrium point of view. 

The overwhelming and not at all surprising conclusion is t hat inflation reduces 

social welfare from the point of view of both the consumer surplus and the 

producer surplus . 

7 In castaneda (1992) it is shown that the firms will never synchronized 
for the strategic substitutes case . 
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1. THE HODEL. 

Consider an economy subject to an inflationary process where the price level 

grows at rate g. I assume two symmetric firms with the one period return 

function expressed in terms of real prices . In the following section we will Bee 

that the one pe>;iod return for each firm F' (0, 0) i.1, 2 expressed in terms of real 

prices is st'rictly concave . Furthermore, I will assume that demand 

function is linear in both prices so that given a finite price of the competitor 

(firm j), the maximum price for firm i is well defined, and finite quantities are 

demanded for all prices. Finally, I assume that Fl~(Xl'Xl»O .1-1,2 , i.e. the one 

period return function exhibits the property of strategic complementarities, 

consequently one would expect that "raising x, , increases the marginal profits 

of x, , making synchronization more likely (Sheshinski and Weiss 1992 p.33S)o •• 

Indeed, this is one of the main results of the paper. 

Each time that the firms want to adjust. their prices, they have to pay. a fixed 

cost K, which is larger than the returns obtained by the firms at the static 

Nash8, the fixed cost will force the firms to be inactive for s ome amount of 

time. A salient feature of this model is that it determines endogenously . the 

time of adjustment by the firms, as ·wel l as, the size of the adjustment. 

8 For smaller fixed costs I was not able to reach convergence. 
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2. VALUE FUNCTION. 

Let VI(X1,X,,) i-l,2 be the value function associated with a Markov Perfect 

Equilibria solution, s,tarting at time 0 with prices (X" x,) • The value function 

is defined by the solution of the following pair of functional equations: 

v' (x" x,) -Max p [qMax[F' (5', 5') +BV' (S'-g, s'-g) 1 
P. Sl 

+ (l -q) Max[F' (S' , X,) +BV' (S'_g,x,_g) -Xl 1 
s' 

+ (l-p) [q[F' (x" 52) +BV' (x,-g , S'-g) 1 + 

(l-q) [F' (x" x,) +BV' (x,-g, x,-g)]] =TV' 

(1) 

v' (x" x,) ~Max q[pMax [F' (5', 52) +BV' (S'-g, 5 2-g)] 
~ ~ . 

+ (l-p) Max[F' (X" 52) +BV2 (x,-g , 5'-g) -Xl J 
s' 

+ (l-q) [p [F' (5', x,) +BV' (5 ' -g, x 2-g) 1 + 

(I-p) [F' (x" x,) +BV' (x,-g, x 2-g) ) ) = TV' 

The timing of decisions withi.n each period is as follows: 

At the beginning of the period, firms observe their current state, once they know 

their current state they decide whether they want to pay the fixed cost or not. 

They both observe the decision made by both firms with regard to paying the fixed 

cost. Then they decide where to move. At the end of the period, the exogenous 

process erodes their state variables. 

Within each period, firms playa two stage game; This game's extensive form is 

depicted in Graph 1 and the corresponding normal form is expressed in Graph 2. 

As we can see from the extensive form , there may be mixed strategies involved in 

the decision of whether to pay the fixed cost or not. The p in the above 

functional equation, represents the probability that player one pays the fixed 
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cost in that period. q represents the probability that player two pays the 

fixed cost. s' in the equation above is the optimal response function of 

player one, due to linearity of the adjustment cost function, it is function of 

the current state for player two <xz) if two does not move. If two does move, 

then Sl corresponds to the intersection of the optimal response functions . 

A similar explanation holds for player two. 

I can divide the state space in the following way: Let me define C c as the 

set of Xl and xa in which it is an equilibria that neither of the firms wants 

to move, p and q are equal to zero in the above equations. Alternatively, 0 1 

is the set of states in which only firm one wants to mave, p is equal to one 

and q is equal to zero in the equations above. When p is equal to zero and q 

is equal to cne then the f irma are in the set Ol If P is equal to one and q 

i.s equal to one, then the firms are in the t~igger set for both firms 

whenever firms are in this set they move to the intersection of the optimal 

response functions S' (xj ) Finally, I get the set in which p is between one 

and zero and q is between one and zero, in this set r have a mixed strategy 

equilibria . Let me call this set D_. 8 ' (X,) represents the low boundary 

between the t r igger set for firm one and the continuation set when the state of· 

firm two is at X, 9 . Finally, s represents the point at which firm one (and 

firm two) decides to move whenever both firms are moving together . 

If the extensive form of the game for each period is not defined in this way, 

every time in which there is not a consistent outcome in pure strategies, I would 

9 Since prices can be reduced a , d increased, thel.ae is a high boundary 
between the continuation set and the trigger set for each of the two firms. But, 
because inflation is a one sided process these will never be attained after the 
second movement. 
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have had a v~ry difficult task in calculating the mixed strategy equilibria. 

This is ,so" . because th,e action space is ·continuous10 . The fact that firms 

observe whether they have paid the fixed cost in the first stage of the period, 

allows me to restrict the strategies upon which firms can randomize. In this 

setting, the mixed strategy equilibria occurs only when firms have not a 

consistent decision of whether to move and if so where to move . 
.• ... , .. 

. ........... . We can view the right hand side of the equations in (1) , as an operator which 

, maps tomo rrow ' s value function into today's value function. If the solution 

exists, (see the paragraph below) the standard procedure for solving the pair of 

functional equations expressed above, is to start with an arbitrary function and 

to iterate in the following map until convergence is reached. 

In the single ~eciBion case with standard assumptions on the one period return 

function F' (', ,) and the discount factor B, the contraction mapping theorem 

guarantees the convergence of the above iteration. Obviously, existence for 

strategic environments is not a simple extrapolation of this argument. 

I am not aware of an existence proof for this type of games. Dutta and 

RUBtichini (Dutta and Rustichini 1991) have proved existence in a game similar 

10 ' .Even in the case of discrete action spaces it would have been imposs'ible 
to calculate the mixed strategy equilibria in the computer, whenever the firms 
were mixing between several p~Bsible choices. 
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to this one, but with one state variable11 12. I f the state space is discI·ete 

and the controls that the firms can choose are such that they always fall in the 

discrete grid then existence can be guaranteed by the proof in the book by 

Fudenberg and Tirole (see Fudenberg and Tirole (1991». 

Existence from a computational perspective is verified by seeing whether our 

approximation in the computer is actually converging. As Judd (Judd 1990) have 

suggested, the computational approach to these models, may be viewed as a 

parallel procedure towards proving existence in this kind of problems . The 

computational solution may be contemplated ' as an epsilon equilibria of the 

original problem . 

Given the fact that I solve the model in the computer in discrete time, 

differentiability cannot be guaranted for the whole state space. In particular, 

the value function is not differentiable at the boundary between the continuation 

set and the trigger set. The fact that a firm can either decide to wait for a 

period to adjust or rather to adjust right now , implies two different control 

choices for that firm. It can wait one period to exert its con.trol, thereby 

choosing implicitly a discretely lower state variable for tomorrow. Or it can 

exert its control without delay and choose a higher value of the state variable 

11 Since the o.ptimal response function is non-convex, Le . for some states 
the player does not move and for others she does . Traditional existence results 
which rely on the Kakutani Fixed Point Theorem, cannot be used . The Dutta and 
Rustichini's method uses some kind of monotonicity in the optimal response 
function and then they use Tar ski fixed point theorem to prove the existence, I 
suspect that this approach may work for this model. 

12 Existence of the open loop equilibria is no problem. . Once the other 
firms strategy is chosen, the opt i mization problem becomes a single agent 
procedure. In continuous time, the proof of a existence of an optimal policy for 
a single decision maker would apply (Bensoussain ). 
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for ·tomorrow. Clearly, this · implies that the value function 1s not differentiable 

-·at·· any boundary between the continuation set and any of the trigger sets. 

Moreover, at all those initial states in the continuation set that hit the 

boundary ·exactly , the value function is still nondifferentiable13 • This last 

reasoning insinuates -that the value function is only piecewise differentiable in 

discrete time. Consequently, it is important to keep our approximation in a 

-space suitable for these properties of the value function. A similar proof to 

\ 

t -he .one made in Castaneda (1991) in cont.inueua time, will show that the value 

function is continuous in discrete time . 

In appendix two I explain more carefully the computational approach, here I only 

sketch the main procedure. Given the theoretical restrictions analyzed so far 

it is natural to look for value functions in the space B of piecewise 

differentiable functions mapping Dc:!l2 into 8ll Since, the computer cannot 

approximate the whole space of piecewise differentiable functions. I look for 

a finite dimensional representation of the value function 14 

I calculate the mapping T in (10) in two stages. 

First , I solve for the Nash equilibria in a square lattice with equally distant 

points in both dimensions so that T is exactly satisfied in the above pair of 

·equations for any point in the lattice. So that any point in the lattice is 

given by the following ordered pair : and 

Xj-c;+jh j'O,99 . Furthermore, the origin of the lattice is in the forty five 

13 See Lucas and stokey (1990) page 118 for an example that shows this 
particular problem . 

14 Judd (1990) io a very good paper on computational approaches in economic 
analysis. The impact of that paper in this part of the paper is considerable. 
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degree line so that ct=ct 15. Second, I look for an interpolation method that 

best .. atisfies the theoretical restrictions obtained above, and summarizes better 

the information gotten in the pOints of the lattice. By using this procedure, 

I am replacing the theoretical mapping from the space of continuous functions 

into continuous functions represented above by T I into a finite dimensional 

approximation of that map. In the interpolating procedure I choose a finite 

dimensional basis and represent our approximated value function in this subspace . 

Then," through the iteration procedure I map this finite dimensional approximation 

into another finite dimensional approximation until I reach .a level in which 

v n is reasonable similar to vn+1 • 

Given the fact that the value function is piecewise differentiable, it appears 

that the best approach is to use finite element basis with small support. With 

small support basis, errors in approximation in one part of the state does not 

affect the interpolation in another part of the state. In finite element 

approaches the interpolation proceeds locally, subinterval by subinterval. The 

global approximation is obtained by patching together all the subintervals. The 

approximated Value Function is then expressed in the fo110wing way: 

(2) i=1,2 

A suitable basis to implement the above procedure are the bilinear cardinal 

functions. These cardinal functions span the space of purely continuous 

functions co when the size of the grid tends to zero (the number of points go 

up to infinity) (Lankaster and Salkauskas 1986). ! use this basis to gain 

15 In general c;=c; were very close to zero, so that the whole grid was in 
the positive orthant. 
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computa:tional speed . Bilinear card i'na l funct i ons are easy to con~truct 16. 

16 This argument is not true for higher order approximations. In such case 
the cardinal functions nlay have to be calculated. And when we calculate them 

.they may not have the small support property . 
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3. PARAMETER VALUES AND FUNCTIONAL FORMS. 

3.1 ONE PERIOD RETURN FUNCTION. 

In the computational approach I will study the following model: 

I assume that the representative consumer has a ~Jadratic utility function as 

follows: 

Where M represents money17 and DB represents the degree of interaction 

between the two goods. If DB ilt equal to zero then we have the perfect 

substitutes case . When DB is equal to one then there is no interaction 

between , the goods. Maximization of the above utility function yields the 

following demand functions. 

A symmetric equation holds for q, (p"p,) 

•. _ 0""":""," 
.. ,",,,,"<,_ .. ,-. ; .. ;.." ." 

"._- "!!'~' ---:;'.' 
~ . : ~. 

~'. r 

From the last expression we can get , the following profit function: 

- ' , " l+DB1-DB 1 II (pl ; p2) = (- (---)p,+ (--)p,+-) (P, - C) 
" '" aDS' ' 8DB' 4 

-.~ ; 

17 This in'plies a constant"marginal utility of money. 
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3.2 CALIBRATION. 

I use as a constant marginal cost c=0.4 18. In Table 1 I show the values that 

I choose for each possible parameter ; The discount factor, the size of the fixed 

cost, the rate of inflation and the level of strategic interaction. We notice 

that when DB:.l we are almost in the perfect substitute case. The rates of 

inflation are weekly inflation rates that correspond to a yearly inflation rate 

of 20 percent (0 . 003 in the table)40 percent (0 . 006 in the table) and 8 percent 

(0.0012 in the table) . I also have three different discount factors that appear 

too low to represent any real world real interest rate. The reason for choosing '".; 

these discount factors is speed. For higher rates of discount the computer time 

is exponentially higher . Nonetheless, I run other models with lower and more 

realistic real r ates (higher discount factor) to account for this problem. Table 

2 shows the values of the parameters for this set of models. As we will saa 

below, the qualitative results are basically the same. Considering all the 

~ssible combinations, I will 'start the analysis with 81 models in the first set 
- ...." , . 
• Of' 

of parameters and ,, ~ in the second one. The different'· Vll.lu88 for the parameter ".:c. ;.::~: 

:t~t ~.~~res the ie9#"~6i~t~l~c interaction ~~{y :Je values in parentheBeB ~'1 
~ ; .. 

for the cross price elasticity. I evaluate this latter at the static Nash 

Equilibr i a. In Table ' l we can see that for DB=O . l the Cross Price Elasticity 

is extremely high 19. 

18 The social planner approximation makes me choose this value for the 
marginal cost. The reaSon is that the social planner solution for zero fixed 
costs ia trivially both prices equal to marginal coat. (Which is the same for 
both firms) . If this price is equal to zero then the 58 functions would have the 
5 function very close' to zero, leaving no room for c~parison. 

19 The fixed cost may appear to big for these models . The income per period 
at the static Nash is approximately 0 . 09 so the smallest fixed cost F =.2 is 
roughly two times the income per period, I tried smaller fixed costs -.1. 
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4. RESULTS. 

4 .1 PLAY SET. 

The play set is in graph one; it is defined as the set of states located between 

the optimal response functions S'(Xj} ' i-l,2, j oi and the boundaries between the 

continuation set and the trigger sets, the joint trigger eet Q. , and the 

trigger set for each firm 0 1 i-l, 2 In other words, the 

play set comprises the sets of states in which the fir ms will stay after the 

ini t i al adj"ustment of prices . In the interior of the play set, it is an 

equilibria that both firms stay put . I get this graph from one typical model in 

the computer . For most of my models with low degrees of interaction (DB).5) 

the shape of the play set resembles graph one. However, for high degrees of 

interaction (DB=.l) , I was not able to reach convergence . The value function 

is cycl i ng for these parameter values. I am not able to account for these 

results . The only thing that I can say, is that other people have reported 

similar problems when dealing with these type of dynamic games20 . 

We notice that the optimal r esponse function has a v shaped form . 

Graph two (not available now) illustrates the optimal response function more 

clea~ly . The intuition behind this shape is as follows : We will see later that 

synchronization is the most reasonable outcome given that both firms will move 

together. COnsequently whenever the firm knows that the competitor will move in 

a short period, it moves to a point that will bring both firms close to the 

intersection of the optimal response functions, -as soon as the competitor moves-

20 Ariel Pakes have reported these kind of anomalies 
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It .. is .i",teresting to point out that mixed strat'egies appeared ' in few cases. 

J',ppenc;1ix one. discusses th-is outcome' in more detail . As argued there, these 

results are basically due to the computational calculations. In my view it is 

not very likely that they will appear in the truly discrete time model • 

..•• 2 .SS POLICIES . 21 

'j.'he literature has brQadly dealt with the issue of whether firms follow a regular 

pattern of adjustment in their control variables when they are facing a steady 

process of erosion. of their states and fixed costs of adjustment. :cai;:,lin and 

Sheshinski (1987) have proved the emergence of Ss policies as an optimal decision 

pr~cess for a monopoly with non- convex costs in the single product case. 

~"~shinski and Weiss (1990) show that a two goods monopoly with 

. complementarities, can follow a synchronized pattern of adjustment in its two 

prices, adjusting both prices at equidistant times always to the same level . In 

other words the monopoly follows Ss policies in each of its two price.s and it 

adjusts both. prices at the same time . Further, they even prove that the policy 

of following Ss rules in each of the prices of the monopoly at synchronized times 

is, a locally stable process, and that they hold for a v~riety of. . initial 

conditions. 

One of the most important results of this paper is to show that the intuition 

advanced by Sheshinski and Weiss (1990) regarding synchronization and Ss policies 

21 In this section we will make simulations, and see how frequent is the 
equilibria in which the firms follow a cycle of price changes at equidistant 
times, always to the same level (an Ss rule) in a synchronized fashion. 
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is maintained in symmetric Markov games with strategic complementarities between 

the prices of the firms. For a variety of games and initial conditions, the 

firms will follow Ss rules in its own price and will adjust their price in a 

synchronized fashion. 

For each model, I pick one hundred equidistant initial conditione22 • Then, I 

run 15000 simulations for each initial condition23 • The aim of this exercise 

is to find out whether firms will synchronize their adjustment and follow Ss 

rules in its own price. The results show that synchronization in adjustment and 

Ss policies is by far the most frequent outcome from most initial conditions. 

Nonetheless, non-synchronized behavior cannot be ruled out24 . 

Table 3 summarizes the results for these models. We can see that synchronization 

appears as the most frequent outcome. As illustrated in Graph three, the 

intuitive reason for having synchronization, lies in the fact that for all models 

the joint trigger set and the continuation set are connected by a continuum of 

22 I approximate the game in a grid of ten thousand equidistant points . 
The distance between each adjacent vertically or horizontally adjacent point is 
0.01. 

23 The reader may wonder why I ran so many simulations. The reason comes 
from the cases in which I have indeterminacy in the choice of the equilibria 
either in terms of Pareto rankability or either in terms of mixed strategies. 
In all those cases I have to use the random number generator of the fortran 
compiler. In order to get a robust result I had to run 15000 simulations. I 
tried 7000 and I notice that there was a difference between both due to these 
reasons. 

24 When the firms follow nonsynchronized policies, it will be highly 
unlikely for them to follow an Ss rule, we can see this by looking at the play 
set, only in the extreme case in which there is no interaction between the firms DB-l.O 
will the firms follow Ss rules in a nonsynchronized fashion. When there is 
positive interaction between the firms, the adjustment in the price by any of the 
firms is a function of the state of the other firm. 
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states (the two lines in black). This latter fact makes the synchronized state 

. .... ...• -. locally- stable . Further, as discussed before, the shape of the optimal response 

, . .;. f~n9tion .favors synchronization. Finally, as illustrated by the arrows in the 

gr~ph, ttIe · t'act that inflation is an exponential process, forces the state to 

move towards the 45 degree line in the graph . This latter fact is illustrated 

by the arrows. 

If we look carefully at Table 3, it is interesting to point out that the non-

synchronized outcome appears to be more frequent, for low degrees of interaction, 

DB-.9. This should not surprise us, for low degrees of interaction ·the play 

set becomes almost a squa.re. In other words, if we consider the .limit in which 

no interaction exists (DB-1.0) , the play set becomes a ·full square, in which 

case the firms are perfect monopolies, and each 'of them follow Sa rules 

completely independent of the othsr firm's timing ; Synchronization will occur 

only in the unprovabie case of initial conditions with exactly- the same initial 
.-

real prices for both firms. Consequently, we should expect to. __ h ••• ~ore non-

synchronized· outcomes , aa we have a degres 

>~/:~':~.~~:f.·~.··~~~"· ;;-',",. 
'". ~ ' . - .: .~~ 

of interactiOn (DB) closer to 1.0 • 
. ~: ., 

' ~.~~~j~' ~~. ':~:i1!!' 
" .c. .: ~':" '.:. 

Finally, a word of caution in interpreting the result~ ·is i~ · order. We observe 

in the table that there are several cases in which syn~nization was the only 

asymptotic outcome . But these results do not preclude the existence of non-

synchronized outcomes . In. fact, what explains this is that the points · which I 

choose to start the simulations, did not happen to be in the right place for the 

non- synchronized outcome to emerge. Table 3 shows that synchronization is far 

more frequent than the non-Bynchronized outcomes. 
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TABLE 3 
SYNCHRONIZATION RESULTS 

INFLA:!:ION DEGREE OF 
III'rERAC'rION 

0.003 .9 

.5 

0.006 .9 

.5 

0.0012 .9 

. 5 

0 . 003 .9 

.5 

0 . 006 . 9 
';: .. 

.5 ~, 

0.0012 .9 

.5 

0.003 .9 

.5 

0.006 .9 

.' .5 
-. 

- , ,. , O~Q012 · .. ;':~ !l ., . ,, " . 
-- . , 

• 5_ 

0.003 .9 

.5 

0.006 .9 

.5 

0.0012 .9 

.5 

0.003 .9 

. 5 

0 . 006 . 9 
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NUMBER OF 
SYNCBRONIIIID 

OU'rCOMllS 

98 

100 

98 

100 

88 

100 

100 
'., . , 

100 

100 

100 

88 

100 

100 

100 

100 

100 

-~~ .. ' 0,, __ 100 " 
,,' -- ----

100 , . 

94 

100 

82 

100 
-

84 

100 

100 , .' 

100 

90 
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CONTINUATION OF TABLE 3 

B FIlED COST INFLATION DEGREE OF HUMBER OF 
INTERACTION SYHCBRONI lED 

. . '.' . 
OUTCOMES 

.978 .5 .006 . 5 100 

.0012 .9 76 

. 5 100 

.2 .003 .9 88 

.5 100 

.006 .9 100 

.5 100 

.. "-,." ,- -
" .0012 .9 96 

.5 100 

.987 .9 .003 .9 100 

. 5 100 

.006 .9 92 

.5 100 

.0012 .9 100 

.5 100 

. 5 .003 . 9 98 

.5 100 
.-

.006 .9 98 

.5 100 

. 0012 . 9 70 

.5 98 

.2 . 003 .9 84 

. 5 100 

. 006 . 9 100 

. 5 100 

. 0012 .9 100 

.5 100 



B 

.998 

Note: 
factor. 
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CONTINUATION OF TABLE 3 

FIXBD COST INFLATION DBGREB OF IIUMBlIR OF 
IHTBRACTION SYlfCIIRONIZBD 

OUTCOMES 

.4 . 003 .8 100 

.5 100 

.006 .8 100 

.5 100 

.2 .003 .8 100 
\ 

.5 100 

. 006 .8 100 

.5 100 

B in the first column of the first row corresponds to the discount 
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4.3 SYNCHRONIZATION IS A REASONABLE OOTCOME IF THERE ARE PREPLAY 

NEGOTIATIONS. 

Even though synchronization with Ss policies coexists with non-synchronized 

results, it is rather interesting to find out that synchronization with Ss 

policies maximizes the sum of the value functions for the two players. This is 

true for all 62 parameter models considered for this paper. Graph seven 

illustrates the sum of the value functions for one of these models. 

As we can see in the graph, the sum of the value functions attains its maximum 

along the forty five degree H.ne, in a point very close to the intersection. of -A 

the optimal ~~sponse.' .functions. 
: ".: ':'~;; . ), "..-l~ 

itlustrat~.s the contour map. Graph . eight 

This refinement'makes synchronization 'with s 's policies a ' ~QsSiblY more desirable ,. 

outcome for both firms, whenever they are ' able to pick up the initial conditions. 

If firms sit down before the start of the game and look for an equilibria that 
" 

will satisfy both, aynchronization may emerge as the most likely equilibria . 

This is d;ie to the fact that the sUm of the value functions for both firms is 

higher when they are synchronized. This result is reminiscent of the Maskin and 
" 

Tirole(1988(a» rtlsu!t·:';';Jti.c'h pio~~ii that the m6nopoly QUtcome can be sustained 

as an equilibria and .it is in the Pareto Frontier. The Maskin and Tirole's 

result implies that firm.s .· will choose a constant relative . price through time, 

which is precisely what synchroniz'stion with Ss policies means in the COntext of 

my game . On the other hand , this conclusion is the counterpart for the game 

case, of the Sheshinski and Weiss (199'0) result that says that in the collusion 

case the monopolist prefers synchronization with SB policies over staggering. 
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For all cases the frequency of . price adjuetment25 decreases. Table 7 summarize~ 

these results . For the synchronized case the results are consistent with those 

. obtained by Sheshinski ·and Weiss (1918). 

5.2 CHANGES IN THE RATE OF INFLATION. 

When inflation rises I get the same results as in the fixed cost case with regard 

to S,. S I S'(x,) S goes up, s goes down for all the 

models. The reader can confirm this latter statement by looking at Table 4. 

s' (x,) goes up for DBe..8 and "DB:. 9 · , and is undetermined for DB'.S • 

. 
Finally, s'(x,) goes down. A difference with the fixed cost case is that the 

frequency of price adjustments goes up . Graphs five depict this case and Table 

8 summarizes it. 

5.3 CHANGES IN THE DISCOUNT FACTOR. 

In the synchronized case when the discount factor B goes down we have that the 

point towards which both firms move (S) , whenever they do so, goes down. In 

addition, the point at which both firms decide to move (s) declines as well 

(see Table 4). We can gain some insight about this result by looking at the 

following first order condition , which have to be satisfied when both firma are 

moving in a synchronized fashion to the optimal point (S,m , and have to wait 

25 There are two ways in which I infer these results from the model first 
in the simulation part of the program I count the number of jumps (adjustments) 
that the firm makes for each initial condition during the 15000 iterations. An 
alternative way of inferring these result is by looking at the size of the play 
set. 
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e, , to reach their trigger sets : 

v,' (5, S) • r'I, e-rhmF; (S-ghm, 5-ghm) • 0 
,l..mo' 

By strict concavity of F(-, -) , if Ft (S, S) >o-Fi (S-gm, S-gm) >0 . Which contradicts 

the above equation therefore Fi (S, s) ~o In order for the above equation to 

-be zero the marginal profitability of each firm at S is negative, and at the 

jOint trigger set ell I is positive .. As Sheshinski and weiss (1978) have 

pointed out: as the Discount Factor B goes down "the net effect is to reduce 

the present value of marginal profits .. the firms's response is to increase the 

relative weight of the positive marginal profits by decreasing the upper and 

lower real prices" (Sheshinski and Weiss' (1978)p . 297). This effect on marginal 

profitability is translated to the whole play set, causing a southwest shift of 

this set. 

The boundary between the continuation set and the trigger set for firm one 

s' (x,) (6'(~) respectively for firm two) decreases. 

Finally, the optimal response function 5 ' (x,) goes down too (in the 

continuation set) . This happens for all cases . Table 9 summarizes these results 

and Graph six illustrates them. 
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B FIXED INFLATION 
COST 

. 992 .9 0.003 

0.006 

, 
0.0012 

.5 0.003 

0.006 

·0.0012 

.2 0.003 

0.006 

0.0012 

.978 .9 0.003 

0.006 

0 . 0012 

.5 0.003 

0.006 

TABLE 4 
S-s RESULTS 

DEGREE 
OF 

INTERA • 

. 9 

.5 

.9 

.5 

. 9 

15 

.9 

.5 

.9 

.5 

. 9 

.5 

.9 

. 5 

.9 

.5 

.9 

.5 

.9 

. 5 

.9 

.5 

.9 

.5 

.9 

.5 

.9 
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. 
S • S-. 

.82 .49 . 33 

.75 .47 . 28 

.87 .46 .41 

. 79 .44 .35 

.77 . 52 .25 

.71 .5 .21 

.80 .53 .27 

.74 ;52 .22 

.84 .5 .34 

.77 

.76 .56 .2 

.70 .53 .17 

. 78 . 58 . 2 

.71 .55 .16 

.80 . 56 . • 24 

.73 . 53 .2 

. 75 .60 .15 

.69 .56 .13 

.77 .41 .3 

.71 .41 .36 

.82 .39 .43 

.75 .38 .37 

.73 .42 .31 

.67 . 41 .26 

.76 .48 .28 

.71 .47 .24 

.81 .46 .35 
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CONTINUATION OF TABLE 4 

B FIXED IIfP'LA~IOIf DEGREE S a S-a 
COS~ OF 

IIfTERA. 
" 
.978 .5 .006 . 5 .74 .45 .29 

.0012 .9 .73 . 49 .24 

.5 . 67 .47 . 2 

.2 .003 .9 .76 .55 .21 

.5 .70 . 54 .16 
, 

.006 .9 .78 . 54 . 24 

.5 .72 . 52 . 2 

.0012 .9 . 72 .56 .16 

. 5 .67 .55 . 12 

. 987 .9 .003 . 9 .80 . 46 .34 

.5 .74 .45 .29 

.006 .9 .86 .42 .44 

. 5 .78 .42 .36 

.0012 .9 .75 .48 .27 

.5 . 69 .45 .24 

.5 .003 . 9 .79 . 51 .28 

.5 .72 . 49 . 23 

.006 . 9 .83 .49 .34 

.5 .76 . 48 .28 

.0012 .9 .74 .53 .21 

. 5 .69 .51 .18 

. 2 . 003 .9 .77 .57 .2 

. 5 .71 . 55 .16 

.006 . 9 . 80 .55 . 25 

.5 .73 .54 .19 

.0012 .9 . 74 .59 . 15 

.5 . 68 . 55 .13 
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Note : 
factor. 
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CONTINUATION OF TABLE 4 . 
FIXED INFLATION DEGREE S • S-. 

COST OF 
I HTERA • 

.4 .003 .8 .80 . 56 . 24 

. 5 . 74 . 54 .2 

.006 . 8 . 83 .53 .3 

. 5 .77 .43 .34 

.2 .003 .8 .78 .59 .19 

.5 . 72 .58 .14 

.006 .8 .80 .56 .24 

.5 .74 .54 .2 

B in the first column of the first row corresponds to the discount 
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: ,,' 
6 • . . COMPARISON .WITH COLLUSION. 

Sheshinski and Weiss (1990) ·have examined the collusion case. They conclude that 

t;he !'ynchronized ·movement is .. locally stable ' for the ' case in ' which we ' have 

strategic complementarities. They also find out that , for the quadratic profit 

function, an increase in the rate of inflation increases the frequency of price 

changes . In turn, an increase in the costs of adjustments reduces the frequency 

of price changes. A" stronger positive price interaction reduces the frequency 

of price changes in the synchronized steady-state" (Sheshinski and Weiss (1990) 

p. 4) • I solved the collusion case in the computer and I confirm all of the 

Sheshinski and Weiss results. 

More interesting than these results ars those in which we compare the collusion 

results with the game results. In the simulations we have for all ' initial 

conditions and for all models with the sarne parameter values26 , the frequency 

of adjustments ' (jumps) in prices is higher under the game than under the 

collusion case; these differences go up as the degree of interaction increases 

(as DB goes down). Table 6 depicts this result. In the case of 

synchronization the difference between Sand 9 goes up as we switch from the 

game to collusion (see Table 5). This represent another way to confirm the 

results regarding the frequency of price adjustments. 

Secondly, as the degree of interaction increases, (Seo_ 9 ",) - (S"-9") (where the 

supraindices co and ga represent the collusion and the game case 

26 I solved the collusion case mainly for the cases written in Table Five 
and Six. However, I ran a representative sample of the other cases, and the 
results were exactly the same. 
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respectively Sand s have the same meaning as above) goes up . "The monopoly 

will be more able to exploit the complementarities and hence to maintain a higher 

price . This property allows it to adjust the prices less frequently and to save 

fixed costs. " Table 5 illustrates this result for a subset of the parameter 

models considered. 
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TABLE 5 
S-s RESULTS COMPARISON BETWEEN THE COLLUSION 

OUTCOME AND THE GAME OUTCOME . 
B . K · INFL DB S • S-. S • S-. 

GAME GAME GAME COLL COLL COLL 

.987 . 9 . 003 .9 .80 . 46 . 34 . 81 . 46 .35 

.5 .74 . 45 .29 . 81 . 46 . 35 

. 006 . 9 .86 .42 . 44 .86 .43 . 43 

.5 .78 .42 . 36 . 86 .43 . 43 

.0012 .9 .75 .48 . 27 .76 •. 48 .28 

.5 .69 .45 .24 .76 .48 .28 

. 5 .003 .9 .79 . 51 . 28 .80 .51 .29 
, . ..•. 

. 5 .• 72 .49 .23 .80 . 51 .29 

.006 . 9 . . 83 .49 . 34 .85 .49 . 36 

.5 .76 .48 . 28 .85 . 49 . 36 

. 0012 .9 .74 . 53 . 21 . 75 .53 .22 

. 5 . 69 .51 . 18 . 75 . 53 .22 
....... 

• 2 .003 .9 .77 .57 . 2 .78 . 57 . 21 

.5 .71 . 55 .16 .78 .57 .21 

. 006 .9 . 80 .55 .25 .81 .55 .26 

.5 .73 . 54 .19 .81 . 55 . 26 

.0012 .9 . 74 .59 .15 .75 .59 . 16 

. 5 .68 . 55 . 13 . 75 . 59 .16 

Note: The letters in the first row correspond to the following meanings : B 
corresponds to the discount factor, K to the size of the fixed cost, DB 

corresponds to the degree of interaction . 
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7 . WELFARE ANALYSIS. 

Whether increases in the rate of inflation diminishes the social welfare is an 

important topic that the literature haa tried to address' for many years. 

In this partial equilibrium model a rationale for affecting the level of 

inflation would exist if I can show that, for a wide variety of parameters, 

increases in the rate of inflation lessen the social welfare . Indeed, this is 

what happens in the context of my model. 

For all parameter values, I calculate the present value of the consumer surplus · 

as the discounted stream of consumer surplus flows that emerge from the Nash 

outcome at each possible state. For each node in the grid I have the present 

value of welfare that the consumer will get if the game starts in that node. 

Once I identify the present value of the consumer surplus for each node, I 

calculate the maximum of the present value consumer surpluses over all nodes. 

Not surprisingly, when the rate of inflation rises, the maximum present value of 

consumer surplus decreases for all models. Let us take the synchronized ca8e to 

gain some intuition for this result . As we saw in the comparative static8 

section: As inflation goes up s goes . down, and the frequency of price 

adjustments increases . Therefore, though firms will charge a lower price than 

before for some time, they spend much less time in the low price section of the 

Ss band ther.eby. decreasing consumer surplus. 

Another interesting exercise is to compare the frequency of price adjustments for 
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the _soc_iat plannerZ1 wUh-the one gotten from tile oligopoly. For each pararn~ter 

valuesZ8 , I compare the frequency -of price adjustments between the social 

planner ,and the oligopoly. -Since the social planner internalizes the positive 

-interactions in adjusting -the prices, tt is not surprlsing to notice that the 

social -planner adjusts a lower number of times than the oligopolistic firms for 

all -models (-See Table 6) . . ' . " . 

We can see in Table 5 -- as we noticed in the collusion'~ comparis'on above-~, that 

the difference in the frequency of price adjustments goes up -as the Ciegreti of 

·interaction increases (as DB decreases) . It is interi!sting to notice' -that 

(where the supraindices so and - ga represent the social 

planner and the game case respectively 5 and s have the same meaning as 

before) increases as the degree of interaction goes up. The social planner 

intends to maximize social surplus net of production costs with fixed costs of 

adjustments for the -prices. Thus, the social planner will try to save- orithe 

fixed - costs- by exploiting the complementarities in prices. This intuftion 

rationalizes the- above results. As complementarities go up (DB goes down), 

the social -planner will further exploit these complementarities, sharpening the 

differences with the game. 

It is meaningful to compare how the difference in the frequency of price 

27 The social planner maximizes social surplus. 

Z8 For very large fixed costs the optimal policy of the social plann~r _ i8 
never to adjust the prices. Since the prices erode at an exponential rate, they 

- will never- become negat ive. Thus, for a fixed cost equal to .9 this is always 
-the optimal--policy . I am not making--use these parameter values in this model's 
comparison . 
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adjustments for the game vis-a-vis the social planner changes as the rate of 

inflation goes up . In all the models studied29 the frequency of price 

adjustments goes up as the rate of. inflation increases. As the rate of inflation 

goes up, the difference in price adjustments between oligopolist and the social 

planner increases . Consequently, the oligopolists deviate further from the 

optimal frequency of expenditures of fixed costs, when I increase the rate of 

inflation. This measure could be a proxy for the social costs of inflation. It 

shows that as inflation goes up, oligopolistic organization of markets tend to 

spend mOre resources than what it would be optimally desirable . This happens 

because oligopolies are not able of internalizing the complementarities in 

deciding how frequent to adjust prices, as well as, the social planner does . 

This argument might serve to justify public policies that reduce the rate of 

inflation . 

Finally, we need to examine what happens with the producer surplus in the 

synChronized outcome, when the rate of inflation increases. In fact, for all 

models, when the rate of inflation goes up the producer surplus goes down. The 

explanation for this result follows from the arguments above, as the rate of 

inflation increases, the freque ncy of price adjustments goes up, thus forcing the 

oligopolists to spend far more fixed costs. 

29 As in the collus i on case, I solved the social planner case mainly for the 
par ameter values indicated in Tables five and six . However, I also ran a sample 
of the other cases , and I got the same results. 
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TABLE 6 
COMPARISON IN THE NUMBER OF ADJUSTMENTS BETWEEN 

THE GAME THE SOCIAL PLANNER AND THE COLLUSION CASE , . 
B K INFL DB AVERAGE AVERAG AVERAG DIFFEREIf 

.. -. , 
; NUMU:R . NUMBER NUMBER IN ADJUST 

ADJUST OF OF BETWEEN 
·1 . , ' COLLUS ADJUST · ADJUST GAME AHD 

SOC PLA GAME SOC PLA 
" " . .. 

.987 • 9 . 003 . 9 77 N.A.+ 79 N.A.+ 

.5 76 N.A.+ 92 N.A. + 

.006 .9 125 N. A.+ 129 N.A+ 

.5 125 N.A.+ 156 N.A.+ 

.0012 .9 38 N.A.+ 39 N.A •• 

. 5 38 N.A . + 40 N.A . + 

.5 .003 .9 98 41 100 
.. 

59 

.5 . 97 41 100 59 

.006 . 9 158 70 165 95 

. 5 158 69 198 129 

.0012 .9 51 19 52 33 

.5 50 19 57 38 

.2 .003 . 9 138 68 142 74 

.5 138 68 142 74 

.006 .9 221 109 228 119 

.5 221 109 273 169 

. 0012 . 9 72 34 74 ~O 

. 5 71 34 86 52 

No.te: The figures in the table above were calculated as an average of the one 
hundred initial conditions. 
+ I do r)o,t have figures for these parameter values because K is to big, 
therefore, the optimal policy that the social planner chooses is to wait until 
the real prices reach the axes of the positive orthant. Since inflation erodes 
the real prices at an exponential rate, these trigger boundary is in fact never 

. reached. 
Note: The letters in the first row correspond to the following meanings: B 

corresponds to the disccunt factor, K to the size of the fixed cost, DB 

corresponds to the degree of interaction. 
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CONCLUDXNG REMARKS. 

In this paper I have examined a synunetric duopoly model of 'price competition with 

a fixed exogenous inflation rata and fixed adjustm~nt costs. I characterized 

this game by approximating the solution in the computer. What follows, 

summarizes the insights I was able to obtain from this approach: 

\ 

Synchronization with Sa policies appears to be the most frequent outcome . The 

firms follow synchronized adjusment in their prices with each firm following an 

ss rule far more frequently than noneynchronized outcomes, -and this is !!J,o from 

a wide variety of initial conditions and a wide variety of models~. Hence, in 

dynamic oligopolistic competition with fixed costs of adjustments synchronized 

ss rules appear to be the most robust result. Secondly, and not for that less 

important, synchronization with Ss rules followed by each firm, appears to be the 

most reasonable outcome for both firms to start the game , if we allow for prep lay 

communication . This result follows from the fact that the sum of the two value 

functions attains its maximum at a synchronized level . 

The comparative statics with respect to a change in the rate of inflation, a 

change in the discount factor and a change in the costs of adjustments are 

consistent with the results advanced by Sheshinski and Weiss (1978) for the 

single good case. As inflation rises, the frequency of price adjustments go up. 

As the fixed cost goes up, the frequency of price adjustments decreases. 

Finally, I was able to draw some comparisons between the outcome of the game with 

the collusion case, as well as with the social planner case. Not surprieingly, 



. ,. 43 

in the collusion case, the frequency of price adjustments decreases, when we 

compare thi", . witl:l the g.~e solution. Moreover, the difference between the 

frequency Of price adjustments in the collusion case and the frequency of price 

,, ~djus.tments in the game case, goes up as the· degree of interaction ' increases. 

The same property holds for the comparison .of the game with the social planner. 

AdditioI\~lly, I try to deal with' the issue of the social costs of inflation. I 

calculated .the maximum of the present value of the consumer's surplus and, then 

I analyzed its behavior as the rate of inflation increases. I conclude that as 

the rate <;>f inflation increases, the present values of the consumer surplus 

decreases. An alternative proxy to measure how the social costs" of inf·l.ition 

behave as the rate of inflation is increased was the difference betweeri"' the 

. frequency of price adjustments under the social planner solution and the solution 

. of . the game. This differen<::e climbs as the rate of inflation increases • 

Consequently, the oligopoly spends more resources (fixed costs) as the rate ' of 

inflation goes up than what it would be socially desirable , Furthermore, for: the 

synchronized case, the producer's surplus drops when the rate of inflation 

increases . This latter result, confirms in an alternative way, the impact on the 

frequency <;>f price adjustments, of changes in the rate <;>f inflation. 

-. 



44 

APPENDIX 1. 

Finally, allow me to make a brief comment about mixed strategy equilibria. The 

only area in the state space in which mixed strategy equilibria appears30 , is 

in the region highlighted in black in Graph nine . That is th,e area of the state 

space in which the continuation set, the trigger set for on~ of the firms and the 

joint trigger set are close . This equilibria occurs because of problema 

approximating the boundaries between the different sets. As mentioned in above, 

these boundaries are non-differentiable. I was not lucky to put the nodes in the 

right position. Consequently, my finite element technique has problem of 

approximating the boundary in this area of the state. For any outcome of the 

mixed strategy equilibria, the next period both firms will be close to the 

intersection of the optimal response functions. i.e. either both firms move 

today or both firms move tomorrow or one of the firms move today and the other 

moves tomorrow. In the limit (in continuous time), since we have reactions 

within an instant, ,the outcome wil l be that both firms move together to the 

intersection of the optimal response functions . 

30 Mixed Strategy equilibria appear in very few models, most of the models 
do not have that equilibria. 
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Appendix 2. 

As mentioned in the main text the computational approach works in two stages. 

First I solve for the Nash equilibria in a square lattice with equally distant 

points in both dimensions so that T in equation (1) is exactly satisfied for 

any point in the lattice. Second, I look for an interpolation method that 

satisfies the piecewise differentiability imposed by the discretization of time. 

In this second procedure, I choose a finite dimensional basis and represent our 

approximated value function in this subspace. Then through the iteration 

procedure I map this finite dimensional approximation into another finite 

dimensioanl approximation until I reach a level in which V· is reasonably 

similar to v·n • As mentioned in the text I use bilinear cardinal function 

because they span the space of purely continuous functions co when the size 

of the grid tends to zero (the number of points go up to infinity), and therefore 

satisfies the property of piecewise differentiability of the theoretical value 

function. Secondly, this basis gives me computational speed. By definition of 

the bilinear cardinal functions, the coefficients which accompany this basis in 

the representation of the value function (equation (2) in the text), are just 

the value function calculated in the solution of the Nash Equilibria at each one 

of the nodes that surround the point of interest for evaluating the function. 

In other words, the difficult task is to calculate the cardinal functions. Once 

these are calculated, the projection coefficients (the in (2) are 

trivially determined . Due to the small support property of the bilinear cardinal 

functions, the representation of the value function in (2) 

bilinear interpolation is reduced to the following expression: 

' VI (x" x.) =VI (xi ,xi) ~11 (x" x 2 ) +VI (x~, xi) ~o, (x" x.) 

+v' (x~, x~) ~oo (x" x2 ) +v' (xi, x:) ~,o (x" x 2 ) 

'I' r· • 

in the case of 
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Where ~ll is equal to one if x,'xt and x,'x,' , at this point all the other +s 

are equal to 'zero. Alternatively .01 is equal to one if Xl-X: and X:J-x; 

the remaining ~s are equal to zero here . A similar reasoning holds for the 

other two 4>s Al~ the other terms are zero. Only those cardinal functions 

which are in the nodes at the corners of the rectangle in which the state falls 

are non-zero. 

Given the properties of this model, it is not advisable to make use of the 

spectral methods that have been used in economics to approximate the value 

function (See Judd 1990). The use of Chebychev polynomials for example, impose 

a degree of smoothness in the solution ( CO) which is clearly undesirable for 

this problem. 

More explicitly, following the technique of finite element, for each subsquare 

[X/IX{+l] X[x-l,x:+1] , I use the information gotten from the first stage at each 

one of the nodes of this subsquare31 • I search for a bilinear function3Z that 

best approximates the value function in this subsquare . In practice this is 

usually done by the use of the standard rectangle. The rectangle with vertices 

in the points (1,1) (-1,1) (-1, -1) (1, -1) I map the value of x, and X. 

to the standard rectangle by the following functions: 

The cardinal functions are given by the following expression : 

We notice immediately that ~,- 1 when (:1 and ,,=1 ~,-1 when (--1 and 

+,-1 when (--1 and ,,--1. Finally +.-1, when (-1 and· ,,--1 • 

31 In the context of this model , this information comprises only the values 
of the operator TV',} at each of the nodes. 

3Z The class of bilinear functions is spanned by the monomials 1, X • Y 
and xy. 



is gi'/en by t "he following equation : 

B (C..,) =TV"j (xt·" xr') <1>, (C..,) +TV"j (xt, xr') <1>, (C..,) 

+TV"j (x/, x,K) <1>3",.,) +TV"j (xt', x/) <1>3",.,) 
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It is interesting to notice that due to the linearity of the approach, in 

addition to the fact that the axes are parallel to the subsquares, I have a 

unique surface that interpolates the whole grid (see Lankaster and Salkauskas 

1986) • 

An important property of this model is the fact that the optimal response 

function o ,f firm i s' is independent of the state in which the firm is 

located. It only depends on the other firm' s state. This property holds because 

the cost of adjustment function of the state is linear. This characteristic 

allows me to speed up the calculations in the computer. Since I am assuming that 

the operator is co, in order to calculate the optimal response 

function S;(·) whenever player one is moving, I use a golden section algorithm. 

A shortcoming of this algorithm is its speed. But it is the only one available 

for C' functions . 
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It is interesting to point out that the uniqueness of the interpolating 

polynomial ia not maintained when I try to approximate the surface with 

polynomials of higher degree. For instance, if I use bicubic splines for 

example, some conditions about the second derivative have to be imposed. 

Besides, for polynomials of higher degree, the cardinal functions do not posses 

the small support property. In the linear case the cardinal functions posses the 

same nice properties as Bsplines functions . This was the rationality for using 

them. In higher degrees the Cardinal functions may not be easy to construct. 

The calculation may involve the inversion of a Vandermodian matrix, which we know 

is a dangerous procedure (see Lankaster and Salkauskas (1986». 

Consequently, if I want to extend the interpolation method to polynomials with 

second degree., - and hence allow for a higher degree of smoothness in the value 

function-, I should use as a basis B splines, which maintain the small support 

property and therefore, allow me to calculate the approximation more efficiently. 
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Table 7 
Changes in the Fixed cost 

_ ....• ~ . . , .'~ . ' ," . . . .. -. 
Size of Frequency 

the Play S s s' (x,) Sl (Xl) of Price 
-, 

Set Adjustments 
.. .. . . 

DB=5 up up down not down down 
clear 

DB-S up up down . up down down 

DB-9 up up down up down down 
-, .... . . .. .... :;.. . 

Note: The entries indicata an increase in the fixed cost. 



50 

Table B 
C h anges ~n the Rate 0 f In fl at.l.on. 

Size of Frequency of 
the Play S s S' (x,) 8 1 (Xa) Price 

Set Adjustments 

DB=S up up down not down up 
_. 

clear 

DB*8 up up · . down ;;p down up 

DB-9 up up down up down up 

Note: The entries indicate an increase in the rate of inflation. 
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Table 9 
Changes in the Discount Factor. 

Play set 
S s Sl(X:l) 8 1 (x:) shifts 

southwest 

DB- S down down down down yes 

DB-8 down down down down yea 

DB-9 down down down" down yes 

Note . The entries indicate a decrease in the discount factor. 

.., .... ...... 



S-s 

DB=5 up 
, . 

. DB=8 up 

DB-9 up 

\ 

Table 10 
collusion comparisons. 

Frequency of 
Price 
Adjustme·nts. 

down 

down 

down 

tSC'''-sC'O) - (S~-gg.) 

supraindices co 
the collusion and 
respectively) 

Degree of Interaction goes up 
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(where the 
and ga represent 
game case 

up 

Note: The results in the tables above indicate a shift from the noncooperative 
outcome to the cooperative one. The results above are a summary of those gotten 
in Table six . 
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Table 11 
Welfare Analysis . 

" , "' " ," Consumer Surplus 

Increase in the Rate of Inflation. Down 

Frequency of Price 
S-s Adjustments. , 

DB:IIS up" down 

DB=8 up " down 

'DB=9 up down 

(S'P- s·P) -:. (Soa-sga) Difference - ln 
(where the the FreqUency of 

.. " Bupraindices sp Price 
and ga Adjustments 

, represent the between the game 
social planner and the social 
and the game case planner solution 
respectively) 

'". " , 

Degree of Interaction goes up up up 

Difference in the Frequency of Price 
Adjustments between the game and 
the social planner solution. .. 

Increase in the Rate of Inflation . up 
Note. The results in the table above indicate a ~h1ft from the noncooperative 
outcome to the social planner" case. These results, are just a summary of the 
results in Table Sand 6. 

.. .' . 
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