
 
 
 
 
 

 
 

Serie documentos de trabajo  
 
 
 
 

 
CAPITAL ACCUMULATION GAMES 

 
 

Alejandro Castañeda 
 
 
 

DOCUMENTO DE  TRABAJO 
 

Núm.  III - 1993 
 
 

 
 

 
 
 
 
 
 



CAPITAL ACCUMULATION GAMES2627. 

Alejandro Castaneda Sabido 

EI Colegio de Mexico 

camino al Ajusco N.20 

Mexico, D.F . C.P 01000 

Fax (5) 645 - 0464 

Tel 645-0210 6 645-5955 ext . 4087 

'.- ,,- . 

The paper uses numerical techniques to solve an investment game 
with fixed costs of adjustment in discrete time . The computational 
teChnique uses a finite dimensional representation of the value 
functions for the players. The finite dimensional basis used for 
this approximation are bilinear cardinal functions. The model 
studies a dynamic game in which firms have to decide how much to 
invest and when to do that. The firms condition their behavior on 
the state of the system . The firms have to pay a fixed cost each 
time they want to change their level of capital. Instead of 
studying the entry deterrence case, the model studies a game in 
which given the degree of interaction, fixed costs and the 
depreciation rate have the right size for two firms to be active in 
equilibrium . In equilibrium the firms will alternate in . their 
investment behavior and will accumUlate capital in such a way as to 
delay the investment of the opponent, so that firms ar,e temporary 
Stackelberg leaders. The model could be use as a fully specified 
theoretical model that predicts alternation in market share. The 
model shows results reminiscent of the literature on the subject . 
The optimal response function when the firms decide to invest is 
higher for the noncooperative duopolists than for the collusive 
solution. Furthermore , other things being equal, the 
noncooperative firms wait less time to invest than the cooperative 
duopolists. 

~ I am mostly grateful to Timothy Bresnahan and Ken Judd for 
very helpful comments and strong support . All errors are soley 
mine. 

27 ·Preliminary, not for quotation. 
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INTRODUCTION. 

Traditionally, investment has been modelled in the industrial 

organization literature' , as a strategic weapon. We can distinguish 

two approaches to modelling within this literature . In the first 

approach, investment is used as a tool to preclude other firms from 

having a large market share. The second approach is that on entry 

deterrence, 'in which the incumbent firm overinvests, installing 

more capacity than it would have installed, were the threat of 

entry absent . The increase in investment is designed to to deter 

the potential entrant from entering the market. Representative 

papers in this tradition include those by Dixit (1980), spence 

(1977), Maskin and Tirole (1988 (b» and Eaton and Lipsey (1980). 
' .. , 

The papers by Dixit (1980) and Spence (1977), assume a once-and-

for-all choice in the firm's level of capital. This assumption 

precludes their model from being truly dynamic. The work by Maskin 

and Tirole (1988 (b» supposes an alternating move environment , in 

which the incumbent overinvests in each turn, in order to preclude 

the other firm from entering the market. Eaton and Lipsey (1980) 

analyze a continuous-time model, in which a monopolist invests 

early, in order to halt the potential rival from entering the 

market . Both studies exhibit rent dissipation. Firms overinvest 

in order to deter the ,potential entrant from enter the market . For 

Eaton and. Lipsey, the additional capital has no productive 

abilities; it is used soley to deter entry. Therefore, , the 
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additional resources allocated to that ~ capital are 'w~sted. By 

contrast, in Maskin and Tirole, the additional capital is employed 

for, .productive uses. Assuming that firms produce at ·fuI"1 capacity, 

Maskin and Tirole conclude that the addit·i'onal capital is socially 

b!meficial. 

A problem with this line of research lies with the fact that in the 

real 'world we rarely observe a monopolist tryirig to defend its 

territory against a potential intruder. 

competing for market share. 

Instead, we find firms 

The other tradition models .. ··lnvestment as a device that prevents 

other firms from increasing their market share: In their view, 

firms overinvest in order to defend agairits their ' rival's 

accumulation of capital. This tradition accepts explicitly the 

coexistence of firms in the market . 

. ··In this vein of research is the literature on irreversible 

investment: Spence (1979) , Fudenberg and Tirole ' (1983). The latter 

. authors studied a ' capital accumulation game with continuous 

investment (over time) and no depreciationi • Spence conciudes that 

speed advantages or differences in the initial conditions permit a 

firm to become a .· leader and to choose a point in the follower's 

optimal response function that, given the initial conditions and 

', ." 

They argue , that the .. assumpbi-en of zero·· depreciation allows 
them to highlight the importance of commitment . 

. " 
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speed of investment, is closer to the s.tackelberg leader position. 

Fudenberg and , Tirole find early-stopping equilibria that are 

supported by the credible threat posed by firms investing until it 

reaches the follower's response function. 

The main goal of these papers was to emphasize the importance of 

first-mover advantages in new industries. 

Hanig (1986) studied a differential game in which firms invest 

continuo~~ly. He uses a linear quadratic differential game. In 

sharp contrast with the authors mentioned above, he allows ,for 

depreciation, and bounds the level of investment by explicitly 

modellIng quadratic adjustment costs. He concludes that in 

comparison with the single , Cournot static Game, firms tend to 

overinvest in dynamic environments. The reason is similar to that 

found in Spence's model, where a firm overinvests in order to ,deter 

the other firm from attaining a high level of capacity. since he 

allows for depreciation to erode capital, capital looses much of 

its commitment value, and, since there are no initial conditions 
. , ; 

advantages, both firms behave 1 ike , Stackel'berg leaders. Haskin' 'and 

Tirole ,(1987) reached a similar conclusion in an alternating move ' 

environment. 

As the brief review of the literature suggests, the analyses 'of"' 

investment as a strategic weapon have been unrealistic in several'" 

ways. First, in some cases only the entry deterrence case has been 

studied. , .. ~econd, in other cases firms were permitted to vary their , ' 

.. 
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stock of capital costlessly at' an~ time. 'Third, in some cases the 

models were not truly dynamic. Finally, some papers assumed a zero 

rate of depreciation . 

I will study a dynamicc' game in which firms decide how much, and 

when to invest. Firms condition their behavior on the state of the 

system, which in the case of this model corresponds to the leyel of 

capital of both firms. These variables are payoff relevant as 

well. To formalize the idea of short run commitments, I introduce 

a , fixed cost- that firms have to pay each tiine they want to change, 

,their level of capital. Consequently, in equilibrium, the firms do 

not ,adjust their levels of capital every period. This property 

diffell"s from the ' literature ' in which firms continuously adjust 

their levels of ' capital (although with some bound in the amt"' mt of 

investment) (Fudenberg and Tirole (1983) and Himig (1986». 

Furthermore, the inciusion ofa fixed cost endogenizes the timing 

of adjustments. Also, in this modelling strategy, firms are 

allowed to move any time they wish. ', These two properties are in 

sharp contrast "with those of the alternating move approach (Maskin 

and Tiro-Ie's models (1987); (1988 (b». 

Like Hanig, I will study a: capital accumUlation game which allbws 

for depreciation. In contrast with Maskin and Tirole's study (1988 

(b», given the degree of interaction, in my work the fixed cost is 

small enough, and the rate of depreciation small enough, to allow 

both -firms to be act:i\,e in " equilibrium . 
. " 

Instead of deterril;lg 

• 
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entry, the firms accommodate each other. 

An interesting question emerges in this context. Given the 

permanence ,of the competitor in the industry, under what conditions 

can a firm take advantage of the sluggishness in competitor's 

response, and delay th~ rival's inv~stment in order to establish 

itself as a temporary Staekelberg leader? The main goal of ' this 

paper is to answer this question. 

The primary contribution of this work lies in building a model 

where investment is a strategic weapon, and which entails more 

. realistic assumptions re<;jarding the competitive process1 
• The 

resul,ts are ,reminiscent of the previous literature on · the subject. 

Instead of. having entry deterrence, or permanent Stackelberg 

leadership, we obtain results in which firms alternate in their 

investment behavior, and accumulate capital in such a way as to 

delay the investment of the opponent, so that firms are temporary 

Stackelberg leaders. Because the rate of depreciation is positive, 

there are no first mover advantages . Rather, if we are willing to 

maintain the assumption that firms produce at full capacity, the 

model studied here could be considered a fully specified theory 

that explatns the alternation in market share among firms. 

. . ..; 

1 Fixed costs of adjustment, positive rate of depreciation, 
co~xist~nce . of few firms in the market and the analysis of , a truly 
dynamic inodel. 
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Section 1 states" the ' basic ,assumptions of the model. I -'argue that 

the one period return function involves a model in which capital 

~ffects marginal cost, and price competition is subsumed in the 

. IIlQdeL. 

section 2 states the dynamic setting and presents the pair of 

functional equations that has to be satisfied in order for the 
\ 

model to be a Markov Perfect Equilibria. I also sketch the main 
....... ' 

computational approach3 • Section 3 presents the parameter values 

chosen to solve the model. Section 4 states the results of the 

game. Because the one period return function exhibits the property 

of strategic substitutes, the firms will never choose to adjust 

their state variables at the same time ; I also look at the play 

set, the set of states in ' which , the firms will stay after the 

initial move. The set shows an area of ,'mu'ltiplicity of eqUilibria 

in ,which we have two types. of equilibria. If one firm invests; 

then it is optimal for the . rival to stay put. However, if the 

first firm decides to stay . put" then it is optimal for the rival to 

invest. Theresul·t . is not :surprising given the property of 
.. ,; . 

strategic substitutes that the return function exhibits. 

In section 5 I perform comparative statics analysls with respect ' to 

changes in the parameters of the model. In section 6 I highlight 

an important result that appears to be persistent for all models; 

3 Appendix .. one has ,a mor,e detailed.; explanation of , ' the 
computational approach. 
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0, for some states, a firm will wait until the competitor is about to 

move, and in the period before, it invests in order to further 

delay the adjustment of the competitor. I call this phenomena 

"partial preemption" and the result is reminiscent of the Eaton and 

Lipsey's (1980) conclusion. 

In section 7 I , change the degree of interaction', and see how the 

firm's investment pO'licy responds to these parameter ' changes. 

" Given the partial ' preemption result, we see that for higner' degrees 

-,~; ' of interaction the firms invest less frequently. 

In Section 8 I make comparisons with the collusion case. I 

.,.' conclude that for higher degrees of interaction, ' the two product 

monopoly will adjust more frequently than the oligopolistic firms. 

For low degrees of interaction we get the opposite result. 

However, even in the latter case, firms attain higher levels of 

investment (each time that they decide to invest) than in the 

collusion solution. Firms will invest beyond the monopolist level, 

a result reminiscent of the former literature, and of the 

traditional static Cournot analysis. 

Finally in sec·tion 9 I make a welfare analysis. I find that the 

.. -',. , , ' social planner adjusts her capi tal more frequently ·"than the 

., oligopolistic ' firms. This is because the firms '"willl "follow 

policies of "partial preemption", which allow them to become 

temporary Stackelberg leaders, and delay the adjustment of the 

: 

-' 
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competitor as much as they can. We will also see that changes in 

the rate of depreciation affect negatively the present value of the 

producer surplus. 

i.'.· .. 

;:;-'.~ _. ".: 

j:~ ' .' 

. . . ' .... . -; 
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1. THE MODEL 
Consider an industry with two symmetric firms with th~ return 

function expressed in terms of capital This return 

function4
, F'(o, o) i-l,2 , is strictly concave, so that for each level 

of capital of the rival firm , we have a well defined optimum for 

the first firm. Finally, I assume that F,'. (x., x.) <0 i-l,2 , Le. it 

exhibits the property of strategic substitutes. 

Each time a firm wants to invest in new capital , it has to pay a 

fixed cost K , which is the same for both firms. The fixed cost 

will force the firms to be inactive during some time. A salient 

feature of this model is that it determines endogenously the time 

of investment by the firms, as well as, the size of the investment . .' 

1.1 PROFIT FUNCTION. 
I study a game with the following quadratic' profit function : 

., 

Following Fudenberg and Tir ole (1983) , I assume that the profit 

function is the reduced form of a pr ocess in which firms compete in 

prices . I aSsume in (1) that firms choose prices in a world of 

imperfect SUbstitutes such that they produce at full capacity • 

Below, I address the appropriateness of .. this assumption. We notice 

immediately that nt2(o,o)<0 , since O<DB<l , Le . the profit fU]lction 

has the pr operty of strateg ic sUbstitutes . DB has also the 

function of parameterizing the degree of interaction. The property 

4 See the next SUbsection . 
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of strategic sUbstitutes implies that larger levels of the rival 's 

capital, decreases the marginal profitability of capital for a 

ftrm. . . Given the endogeneity of the decision to 'invest in this 

model, this property should imply that firms will not adjust their 

capital at synchronous times. Rather, given that the rival has 

already invested, it may be optimal for a firm to stay put for some 

time. Indeed, this is one of the main results of the paper. 

Equation (1), was obtained by calculating the inverse ' demand 

£unctions obtained by the maximization of the following utility 

function: 

(2) 

Equation (2) ' posits a representative consumer, DB represents the 

degree of substitution bEi'tween goods. I calculate the demand .,. 

functions from the utility function in (2) To obtain equation 

(1) I solve for the inverse demand function and substitute it 

into the profit function of eaoq, firm. The reader may wonder why 

I use an imperfect substitute model to analyze quantity 

competition; indeed, the optimal response functions are continuous 

in the traditional static Cournot model, in which goods are perfect 

sUbstitutes. For the imperfect sUbstitute case, the social 
, ... 

planner and the collusion solution, gives me an. independent choice 

for the levels of capital of each of the two firms. In the perfect 

sUbstitute case',. the social 'planner and the collusion model will 

only give me a solution for the total level of capital of both 

firms (the sum of capital for both firms), leaving undeterminate 



11 

the choice for each firm. In order to make comparisons with the 

social planner's solution and with the collusion case, I assume 

that the goods produced by the two levels of capacity, are 

imperfect substitutes: O<DB<l ' 

Doubt~ , arise regarding the validity of equation (1) ; two remarks 

are in order . in this regard. First, other authors have employed 

the same as~umptions, (Hanig (1986), Maskin and Tirole (1988)5). 

Second, the profit function above can be considered art 

approximation to a model in which capacity affects the marginal ' 

cost of the firms, and two firms thus compete in prices in a world 

with differentiated products. As Tirole (1988) has suggested: " 

What we really mean by quantity competition is a choice of scale , 

(~ that determines the firms's cost functions and , thus, 

determines the conditions of price competition (p . 218)" . Given the 

representative consumer model above, I calculate the demand 

function, yielding the following profit function: 

(3) 
D'(IC ~)=((_(l+DB»p (IC ~)+ 

1"'2 (8DB) 1 1'"'2 

(l-DB) 
(8DS) ~ (K

" 
K2) + • 25) (P, (K

" 
K2) - f (K, ) ) 

If f'(K,) <0 then D~,(K,.K,»O, as in equation (1,). If we assume 

5 Following Kreps and Sheinkman (1983), Maskin and Tirole 
(1988 (b» argue that the assumption .that states that firms choose 
prices to clear capacity is reasonable if the marginal costs of 
inv~stment is sufficiently large.! believe' that this conjecture 
has to be proved 'in a dynamic setting. As far as I am aware, this 
is still an open question. 
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that the function f'(K,) is linear then the profit function is 

quadratic. However, the function is not concave in ~ . In order 

to employ this profit function in my dynamic model I would need to 

' assume a quadratic cost , of adjustment in the level of investment, 

which is ' a property that exponentially increases the number of 

calculations6
• One way to circumvent this problem is to assume that 

the ·'function f'(K,) ' is nonlinear with locally increasing returns, 

and asymptotic decreasing returns. This assumption bounds the 

choice ~ in the one period return function. However, the return 

function would no longer be quadratic . If we were to consider the 

true profit function in this setting, I believe that the results 

would not significantly vary from my specification. I consider the 

profit function in equation (1) as an approximation of the true 

profit function in equation ' (3) , with nonlinear f'(K,) 7 

6 See chapter two. 

7 This assumption has been widely used in the macroeconomics 
literature. For example, Christiano (1990) and Hansen and Sargent 
(1990), assume that a quadratic function is a good approximation of 
more general nonquadratic functions. 
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2 V ALUE FUNCTION 
The firms maximize the present value of profits : 

• • 

(4) 

, 
Ml (Xl ,X2) =E ~rFl(Xl ( t) 'X2 (t» - E ~Y'K 

x-o ~ -1 . '. . , 
M2 (Xl , X2) =E ~rF2 (Xl ( t ) ,x, ( t» - E ~Y'K 

x-O ~·l· 

where , Xl ( t ) and x,(e) satisfy the following difference equation: 

(5) 

Xl(t ) =Xl + E iJ-td 
(j:yl<t) 

x 2 (t) =x2+ E iI-td 
(1ly~<t) 

d is the rate of erosion of the state, yl and yj , are the times 

at which firm one and two change their state variables, and the 

amount of the adjustment is given by i; and it. The difference 

equations above ex,press the state at time e, x, (e) and x, (e) , as 

a function of the initial conditions plus the adjustments made by 

the firms up to time t , c less the erosion caused by the rate of 

depreciation ed . 

within each period, firms make two sequential decisions . At the 

beginning of the period, firms observe their current state. Then, 

they decide whether they want to pay the fixed cost or not. They 

both observe the decision made by both firms with regard to paying 

the fixed cost. Then they decide the size of the adjustment. At 

the end of the period, the exogenous process ,erodes their state 

.. ,var-iables:. 
.. . . ; . 
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For· each . period, firms play a two stage game. This game's 

extensive form is! depicted in Graph 2.1. and the corresponding 

normal form is expressed in Graph 2.2. As we can see from the 

extensive form, there may be mixed strategies involved in the 

decision of whether to pay the fixed cost or not. The p in the 

following functional equation (10), represents the probability 

that firm one pays the fixed cost in that period. 

the probability that firm two pays the fixed cost . 

q represents 

s' in (10) 

is the optimal response function of firm one. Due to the linearity 

of · the cost adjustment function, it is function of · the current , 

state for firm two (x,) . if two does not move. If two does move, 

then s' corresponds to the intersection of ·the optimal response 

functions. A similar explanation holds for firm two. 

Let V'(x, .x,) i-1.2 be the value function associated with. a Markov 

Perfect Equilibria S!olution , S!tarting at time 0 with capital 

The value function of both players is defined by the 

simUltaneous solution of the following pair of functional 

equations: 



(6 ) 

Vl (Xl' X2) =Max p [qMax[F l (Sl, S2) +BVl (sl-d, s2_d) -Cm (Sl_x1 ) 1 
P, 51 

+ (l-q) Max[Fl (Sl, X2) +BVl (Sl-d, x 2-d) -Cm (SLX1 ) 1 -K] 
s' 

+ (l-p) [q[F l (Xl' s2) +BVl (xl -d, S2-d) 1 + 

(l-q) [Fl (X1,X2) +BVl (x1-d,x2-d) II =TV1 

V:. -(X1, X2) =Max q[pMax[F2 (Sl, S2) +BV2 (SLd, S2-d) -C",(SLX2 ) J 
q, sa 

+ (l -p) Max[F2 (Xl' S2) +BV2 (Xl -d, S2-d) -Cm (S2_ X2 ) 1 -K] 
s' 
+(l-q) [p[F2 (Sl ,X2)+BV2(Sl-d,x2-d)l + 
(l-p) [F2 (X1'X2) +BV2 (xl -d,x2-d) II =TV2 
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~ . , 

A Feedback Nash equilibria is a quadruple (p,S';q,S') , so that both 

equations in (6) are satisfied. 

I define Oc as the set of '" and x, in which 'it is an .' 

equilibria that neither of the firms wants to move, p and q are 

equal to zero in (6) • Alternatively, 0, is the set of states in 

which only firm one wants to move, p is equal to one and q is 

equal to zero in (6) above. When p is equal to zero and q is 

equal to one then the firms are in the set 0, If p is equal 

to one and q is equal to one, then the firms are in the trigger 

set for both firms 0., whenever firms are in this set they move 

to the intersection of the optimal response functions S'(Xj). 

Finally, I obtain the set in which p and q are between one and 

zero. This set contains mixed strategy equilibrium. Let me call 

this set 0_. s'(X,) represents the low boundary between the 

trigger set for firm one and the continuation set when the state of 
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firm two is at ~ 8 • Finally, s represents the point at which 

firm one (and firm two) decides to move whenever both firms ' are 

moving together . 

. '( '. 

If the extensive form of the game for each period is not .. defined in 

this way, every time in which there is not a consist.ent .outcome in 

pure strategies, I would have had a very difficult task in 
\ 

calculating the mixed strategy equilibria. This is so, because the 

action space is continuous' . The fact that firms observe whether 

they have paid the fixed cost in the first stage of the period, 

allows me to restrict the strategies upon which firms can 

randomize. In this setting, the mixed strategy . equilibria occurs 

only when firms have not a consistent decision in pure strategies 

about paying a fixed cost . 

We can view the right hand side of the equations in (6), as an 

operator which maps tomorrow's value function into today's value 

function. If the solution exists, (see the paragraph below) the 

standard procedure for solving the pair of functional equations 

expressed above is to start with an arbitrary function and to 

iterate in the fOllowing .~ap until convergence is reached· . 
.... 
. ; 

8 since capital can° be reduced and increased, there is a high 
boundary between the continuation set and the trigger set for each 
of the two firms. But, because depreciation is a one sided process 
these wiH. never be attained after the., second m(Jvement. 

9 ~ven in the case of discrete action spaces it is impossi6ie 
. to calculate- the mixed strategy equilibria in the computer, 

··whenever firms are mixing between sevenll possible choices. 
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(7) 

In the single decision case with standard assumptions on the one 

period return function F ' (',') and the discount factor B, the 

·· .. contraction mapping theorem guarantees the convergence of the 

iteration in (7) • Obviously , existence for strategic environments 

is not a simple extrapolation of this argument. 

I am not aware of an existence proof for this type of games . Dutta 

and Rustichini (Dutta and Rustichini 1991) have proved existence in 

a game similar to this one , but with one state variable10 
II. We 

have existence theorems for games with discrete ' state space and 

controls restricted to points i n the grid (Fudenoerg and Tirole 

(1991), chapter 13 theorem 13.2). 

Existence from a computational perspective is verified by seeing 

whether the approximation in the computer is actually converging. 

As Judd (Judd 1990 (b)) has suggested , the computational approach 

to these models may be viewed as an analogous procedure towards 

10 Since the optimal response, function is non-convex, Le. for 
some states thEb player does pot lIlove., a"d for others she does . 
Traditional existence results which rely on the Kakutani Fixed 
Point Theorem cannot be used. The Dutta and Rustichini's method 
uses some kind of monotonicity in the optimal response function, 

:1 ,·, ; .. ~ and then, they use Tarski fixed point theorem to prove existence . 
,. ,.... I suspect that this approach may work for this model. 

,. i 

II Existence of the open loop equilibria is no problem. Once 
the other firms strategy is chosen, the opti mization problem 

d " becomes a single agent procedure. In continuous time, the proof of 
' a existence of an optimal policy for a single decision maker would 

apply (Bensoussan and Crouhy (1983)). 
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.proving existence. The. computational soluti;on may be"thought of as 

an epsilon equilibria of the original problem. 

Given . the f ,act that I solve the model in the computer in discrete 

time, differentiability cannot be guaranted for the whole state 

space. In par.ticular, the value function is not differentiable at 

the boundary be~ween the continuation set and the trigger set. The 

fact that a firm can either decide to wait for a period to adjust, 

or instead adjust right now, implies two different control choices 

for that firm. It can wait one period to exert its control, 

thereby choosing implicitly a discretely lower state variable for 

tomorrow. Alternatively, it can exert its control without delay 

and qhoose a higher value of the state variable for tomorrow • 

. .. ,S:,learly, this implies that the value function is not differentiable 

. ~t any boundary between the continuation set and any of the trigger 

sets. Moreover, for all initial states in the continuation ' set 

that hit the boundary exactly, the value function remains 

nondifferentiablel2 • This las,t reasoning insinuates that the value 

function is only piecewise differentiable in discrete time. 

Consequently, it is important to keep our approximation in a ' space 

suitable for these properties of the value function. A ' similar 

proof to the one made in castaneda · (1992 (a» in continuous time, 

will show that the value function is continuous in discrete time • 

. ; -. 

12 See" Lucas and stokey (1990) page.11B for an example that 
shows this particular problem. ' ". 
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In appendix one I explain more carefully the computational 

approach, here, I only sketch the main procedure. Given the 

theoretical restrictions analyze.g so far, it is natural to look for 

value functions in the space ~ of piecewise differentiable 

.. ... "functions mapping DcIII' into .' since the computer cannot 

.; ~ 

approximate the whole space of piecewise differentiable functions, 

I look for a finite dimensional representation of the value 

function 13 

I calculate the mapping T in (7) in two stages. 

First, I solve 'for the Nash equilibria in a square lattice '·with 

equally distan't''. 'points in both dimens'ions so that T is exactly 

satisfied in . (1) 'for any point in the lattice. Any point in' the 

lattice is given by the following ordered pair: Where 
~. 

x,-c;+ih' i-O,99 and Xj-c;+jh j-O,99. Furthermore, the origin of the 

lattice is on the forty five degree line so that ~;-cl 1.... Second, 

I seek for an interpolation method . that best satisfies the 
.. 

theoretical restrictions of the model, and that better summarizes 
,. 

" the information obtained from the points of the lattice. By using 

this procedure, I replace the theoretical mapping from the space 
" " i~ lJ 

of continuous functions into continuous functions represented in 

(7) by T, into a finite dimensional ' approximation of that map. 

13 Judd (1990) is a very good paper on computational approaches 
in economic analysis. The impact of that paper in this part of 
this chapter is considerable. 

14 In general c;-cl were very close to zero, so that the whole 
grid was in the positive orthant. 

: 

.... 
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In the interpolating procedure, I choose a finite dimensionalb·~sis ' 

and represent the approximated value function in this subspace. 

Then, through the iteration procedure, I map this finite 

dimensional approximation into another finite dimensional 

approximation until I reach a level in which v· is reasonably 

similar to V"'. 

Given the fact that the value function is piecewise 

differentiable, it appears that the best approach is to use a 

finite element basis with small support. with a small support 

basis, errors in approximation in one part of the state do not 

affect the interpolation in another part of the state. In finite 

element approaches the interpolation proceeds locally, subinterval 

by subinterval. The global approximation is obtained by patching 

together all the sUbintervals. The approximated Value Function is 

then expressed in the following way: 

(8) i=1,2 

A suitable basis to implement the above procedure is the use of 

bilinear cardinal functions. These cardinal functions span the 

space of purely continuous functions co when the size of the grid 

tends to zero (the number of points go up to infinity) (Lancaster 

and Salkciu·skas (1986)). I use this to gain computational speed. 

~ ... 
,: .. ' 

-""0' 
: t. · 
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Bilinear cardinal functions are easy to constructu . 

15 This argument is not true for higher order approximations. 
In such case the cardinal functions may have to be calculated. 
And when we calculate them, they may not have the small support 
property. 
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3 CALIBRATION 
In Table 1 I show the values chosen for each possible parameter: 

The discount factor, the size of the fixed cost, the rate of 

depreciation, and the degree of strategic interaction. 

The rates of depreciation are monthly depreciation rates that 

correspond to a yearly depreciation rate of 15 perc en and 25 

percent. Firms revise their ,investment decisions every month, and 

the annual rate of interest is 10 percent. I choose 0.4 for the 

marginal cost of production. The marginal cost for adding 

capacity is 0 . 25 . The fixed costs of adjustment are .34, .5 and 

.67 . The degree of sUbstitution can take on four levels, 0.58 , 

0.6, 0.7 and .8516
• The profit income ratio for those levels of 

interaction at the static Cournot Nash Equilibria are 0.63, 0.63, 

0.65. and 0.68 respectively. These numbers may appear too high, 

the reason for obtaining them is that v in equation (2) is very 

large, which yields a very high constant term in the linear demand 

functions for each firm. If v were not large, - the ' dynamics in 

the game would have been very close to the axes of the positive 

orthant, which would not permit me to accurately characterize the 

game. Table 1 summarizes this information. By combining all of 

the parameter values, there is a total of 36 models • Finally, 
..... 

there 'is a last important property, it is more costly to reduce 

capital than to increase it . Hence, if firms want to reduce their 

16 I tried other values for the degree of sUbstitution (DB) , 
.3 and .5. I was not able to get convergence for some models with 
these parameters val~es , the value function was cycling. This 
evidence is consistent with other people working in this field. 
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level of capital, they will have to pay an extra fixed cost equal 

to 0.25 . 

, . 

" 

. , .. 
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Table 1 

Discount Factor B .992 

Fixed Cost K .34, .5, .67 ' . 
. ' "' 

" . 

,Depreciation ·'· D 0.012, 0 .019 

Degre'e of substitution DB 0.58 , 0 . 6, 0 . 65, 0.7, . 0 .75, 0 . 85 . , 

Marginal Cost of 0.25 

Investment em .. .. 

.. ~. .. .", - . 

Marginal Cost 0.4 
. , " .. 

--
. '~ : ' . "' ., .' > 

. . : . ...... , 

.: :. 



4 COMPUTATIONAL RESULTS. 
4.1 SYNCHRONIZATION. 
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In Castaneda (1992 (b» is argued that synchroriization is by far 

the most robust outcome of that work's simulations. I select one 

hundred equidistant initial conditions for each model and then run 

10,000 periods ina simulation for 'each initial condition. In this 

proc~ss, I check whether synchronization was the resulting 

asymptotic outcome. I also checked whether there was a significant 

difference in the level of capital that both firms would hold, as 

compared with the size of the inaction setl7 • One of the most 

important changes that I make in passing from Castaneda (1992 (b» 
,,' 

to ,this work is the switch from ' strategic complementarities to 

strategic SUbstitutes in the one period return function 11(00 0) • 

This change produces completely different results with respect to 

the simulations. For all models and for all initial conditions 

non-synchronization was the only outcome. In all cases, the 

difference between the level of capital was significant, when 

compared with the size of the set of inaction. Additionaly, 

synchronization in capital adjustment is an unstable process. 

Firms would rather invest in new capital in asynchronous times . 

Villas-Boas (1990) obtains a similar result in a model in which the 

strategy space is considerably reduced. The intuition for this 

result ,comes from the assumption that the profit function has the 

property of strategic sUbstitutes. We remember that in the static 

17 The continuation set in the terminology of chapter 
two. 
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Cournot case with strategic substitutes, the optimal response 

function is negatively sloped. The higher the rival's quantity 

(capital), the lower the quantity (capital) that the firm wants to 

have. In this model, the intuition of the static Cournot model- is 
translated into the following: If the rival wants to have a higher 

level of capital, it is optimal for the first firm to maintain its 

level of capital at a lower level. In the next section we will see 

that therei~ an area of the state space in which it is optimal for 

a firm to invest if the rival wants to stay put, but would rather 

stay put if the rival wants to invest. The reason for · the 

existence of this area follows the same intuition. Therefore, if ... .......... . 

the rival firm wants to invest now, it is optimal for the first 

firm to stay put and to maintain a low level of capital. 

The inclusion of a fixed cost of adjustment introduces a a new 

dimension in the analysis of capital accumulation games. In Maskin 

and Tirole's model (1987), as well as in Hanig's model (1986), 

symmetr ic firms maintain the same high level of capital in the 

steady state (i.e. both firms behave like stackelberg leaders). 

When we include a fixed cost in the analysis, the equilibrium 

behavior changes radically. Both firms alternate their levels of 

capital and the levels of capital are never equal between the 

firms. '. "-
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4.2 PLAY SETI8. 

Graph one illustrates the different sets for the state space. In 

all models I noticed that there is a large set of states that yield 

multiple equilibria . Firm one will move only if the other firm . 

does not move, and will stay put if the other firm moves. Given 

the method of solution proposed above-Le o to flip a coinI9_, the 

firm' that moves adjusts its capital up to the optimal response 

function. This result is not surprising, given the assumption of 

strategic substitutes. Both firms seek to preempt the rival, but 

if one randomly gets to move first, then the other firm would 

rather stay put. ' As mentioned in the last section, the intuition 

for this result follows from the slope of the optimal response 

function of the static game with strategic sUbstitutes. The higher 

the rival's capital, the .lower the level of capital that a firm 

wants to have. In the context of this model, the intuition is as , 

follows: If the rival wants to invest and therefore have a higher 

level of capital, the firm would prefer to maintain a low level of 

18 We can define the play set as the set of states in which 
the g<!.me will be played after the second move. Some of these 
states may be visited only very few times, whereas' others will be 
frequently visited. By looking at the shape of the state and the 
simulation results, it seems that for the case with strateqic . 
substitutes firms will visit more states more often than in the 
case with strategic complementarities (see castaneda (1992 (b» . 
The reason for this result, is that synchronization is locally 
stable for the strategic complements case, whereas is locally 
unstable for the strategic substitutes case. 

19 By flipping a coin, I capture idiosyncratic shocks to any 
firm that permits the other to preempt it. 
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capital. ThtsI'esult impl!:i.e~ that synchronization is locally 

unstable. For . reference I will call this set 0 •. 

If we look at graphs one and two we will see that 0. is far ..... 
. . larger for higher degrees ' of ·interaction (graph one corresponds to 

DB- . 58 , and graph two corresponds to DB-.8S ). Given the fact· that 

firms are strategic substitutes, for higher degrees of interaction 

there are more states in which both firms seek to preempt the 

rival. Any negative exogenous shock that affects a firm will prove . 

advantageous for the other firm, since the shock allows the firm to 

invest, and preempt, at least temporarily, the rival. 

It is interesting to analyze the shape of a typical response 

function S'("1) for a firm that decides to move. For states close 

to the trigger set of ':he other firm °1 , the optimal response 

function is increasing. This is because the firm that moves (i) 

is aware that the rival will move, within a short period. Given 

the fact that capital is a strategic sUbstitute variable, it would 

rather move to a lower level, the closer the time for the rival 

(j) to move. As we get further away from the trigger set of the 
" ~" '" 

other firm °1 , the optimal response function S'("1) becomes 

negatively sloped as in the static cournot case. . The reason is the 

traditional Cournot explanation: the higher the other's firm 

capital, the lower the new level of capital that the firm that is 

moving wants to have. These properties of the optimal response 

function appear to be valid for all models. Again, as we shift 
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from a higher degree of interaction (graph one), to a lower degree 

(graph two), the optimal response function moves down. If the 

degree of interaction is high, the firms will behave more like 

stackelberg leaders whenever they decide to move. The higher the 

degree of interaction, the higher the level of investment that the 

firms want to maintain . 

. . ~ 



.5 COMPARATIVE STATICS 
5.1 INCREASE IN THE FIXED COST 
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The size of the play set increases for both levels of depreciation • 
.. 

Further, s' (Xj) the optimal response function goes up, and B' (xj ) 

the boundary between the trigger set and the continuation set for 

each firm goes down, this property holds true for both levels of 

depreciation . Graph three illustrates these results. 

Regarding simul"ations20
, I obtain the following results: The 

frequency of capital adjustment decreases as the size of the fixed 

costs increases . This happens for both levels of depreciation, for 

all values of DB, and for all the changes between K-.34 and 

" K-.5 , and between K-.5 and K-.67 (See Table 2) . 

5.2 INCREASE IN THE RATE OF DEPRECIATION 

When the rate of depreciation increases the size of the Play set 

goes up for all values of DB s' (Xj) , the optimal response 

function, goes up as the rate of depreciation goes up for all " 

values of the fixed cost, and for all values of degree of 

interaction . B'(Xj) I the boundary between the trigger set for any 

of the firms C, and the continuation set Cc drops, again this "is 

" , 20 As I explain below, for each initial condition and for each 
model in the simulations, I count the number 6f adjustments in the 
level of capital that the firms make. This measure' gives me an 
idea on how frequent the firms adjust capital. 
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true for all fixed costs, and for all values taken on by the 

degree of interaction. Graph three illustrates these results. 

For the three levels of the fixed cost K- . 34, K-.5 -and K-.67 and , 

for ~ll level~. oJ the, degree of interaction DB, we find that an 

in the rate pf depreciation increases the frequency of capital 

adjustments (See Table 2). 

6 PARTIAL PREEMPTION 

It is worth highlighting a result that appears to be persistent for 

all models. If we look closely at Graph one we will notice that, 

in the boundary between _ the continuation set and the set of 

multiple equilibria 0.. (the small white squares), there are 

states in which only one firm moves. The result is reminiscent of 

the literature on Preemption by Maskin -and Tirole (1988 (b» and 

Eaton and Lipsey (1980). A firm adjusts its capital just before 

the oth~r firm is about to be interested in moving, and in doing 

so, adjusts to the highest level of capital that it is possible in 

the game. This tactic allows the firm to succeed as a temporary-

"stackelberg" leader, at least until the other firm reaches the 

boundary between its trigger set and the continuation set. Given 

the property of strategic substitutes, the firm adjusting its 

capital delays the increase in the capital of the other firm until 

the firm that was preempted has such a low level of capital that it 

decides to increase. If we look carefully at graphs one and two, 
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we notice that the area of preemption is larqer for higher degrees 

of interaction. This happens because the area of multiplicity 

Q_ I ' ,i$ , larger for , higher degrees of interaction. Furthe~ore, 
l 

for higher degrees of interaction, " the area of preemption is 

locat~d at higher levels of the state than for lower degrees. The 

intuition , here is straightforward, s'ince for higher degrees of 

interaction, firms will wait less time to preempt their rival . 

7 CHANGES 
INTERACTION 

IN THE DEGREE OF 

In Table 2 I report the average number of adjustments in the level 

of capital made by a firm. The method of calculating these numbers 
1. ," <.\ :-

is as follows . As ,stated in s'ebtic'in 4.2 : l ' I selected one hundred 

equidistant-initial condition for each parame'ter model. Then I 

simulated 10,000 periods for each initial condition and for each 

parameter model. In this process I count the number of adjustments 

that the firms make. The numbers indicate an average over the one 

,hundred' ini tial conditions for each set of ' para!l)eter values21
• We , ' 

note tHat, ' as 'the' 'degree of interaction increases, the average 

number of ' 'adjustinents decreases. The reasons for this are twofold. 

On' ,the omf hand, by looking at graphs one and two, we note that the 

optimal response ' function is higher for higher degrees of 

21 The standard deviation of the average number of adjustments 
was in all cases extremely small," so that the average is a good 
indicator of the number of adjustments for , each model. 



33 

interaction. caeteris paribus, this fact implies more time between 

adjustments. At the same time, the boundaries between the trigger 

sets for both degrees of interaction are almost at the same level. 

The second reason comes from the idea of "partial preemption". In 

graph one we see (using the arrows), that firms delay the 

competitor's adjustment by moving the period before the other firm 

is willing to. move. If we compare graph one with graph two we see 

that the policy of partial preemption delays to a lesser degree the 

competitor's adjustment for low degrees of interaction. Also, the 

fact that depreciation is an exponential process forces the state 

to move to the area of multiple equilibria (0.). This allows 

the firm to follow policies of partial preemption more often. 

8 COMPARISON WITH COLLUSION 
In this section I make comparisons between the collusive case and 

the noncooperative solution. As it has been argued previ ously, I 

assume a world of imperfect substitutes, hence, the solution for 

the collusion. case is well defined. 

Graph one and graph four illustrate the play set for the game 

solution and for the collUsion solution. We can see that, as in 

Hanig (1986), Haskin and Tirole (1987), and as in the static 

Cournot case, firms overinvest in comparison with the monopoly 

solution. We see this in the graphs, where the optimal response 

function for both firms ( S'(xj ) i-l.2 i _j ) is higher than the optimal 
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response function for the monopoly case. For any of the rival's 

states, a firm will invest to a higher level than the level it 

would have chosen were collusion feasible. There is an additional 

dimension, due to the presence of the fixed cost of adjlistment22
• 

The boundary ( S1(Xj) i-1,2 i.J) at which the firms adjust is higher 

for the game solution than the boundary at which the monopoly 

decides to adjust. If firms are not cooperating, then, · other 

~hingsbeing equal they will decide ·to invest in new capital bEifore 

the time they would decide to invest if they were fully 

cooperating . 

T~~~e two differences in the solution between the collusion case 

and the game solution emerge from a negative externality between 

the firms for the game solution. When choosing to inveS'+: with 

respect to both the timing and the amount, the .individual firm 

takes into account the effect of its two decisions on its own 

profits, and not the effect on the industry profits; Hence, each 

firm chooses a higher level .of investment and will invest earlier 

than would be optimally desirable from the point of view of the 

entire market (the collusion solution). 

Table 2 expresses the. average number of adjustments obtained from 

22 This dimension was absent in the former·· ~iterature, because 
they did not include fixed cost of adjustment. 
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the sill\ulatio_ns23. , The , results,' furnish me 'with an idea of how the 

frequency of capital adjustment varies between the game case and 

the collusion case. This same measure was used in the analysis 

above. In contl;"ast with the strategic complements case (Castal'\eda 

'" .. (1992, (b»), the frequency of capital adjustment is higher under 

the collusion solution than under the game solution for a degree of 

interaction (DB) " equal to .58,.6, and .65. This is due to the 

negative effect of the competitors's strategic variable (oapital) 

on the firm's desired level of capital. 

Any time the firm moves, it tries to further delay the move of the 

other firm in such a way that it can maintain "Stackelberg" 

leadership for that period of time. This performance by both 

firms reduces the frequency of capital adjustments relatively to 

the solution for the collusion case. Graphs one and four 

illuminate this result . Note that the optimal response function 

for the game solution is higher than the optimal response for the 

collusion case. Secondly, due to the'''fact that depreciation is an 

exponential process, depreciation tends to move the state towards 

the area of partial preemption . As stated in the last section, ' the 

policies of partial preemption have a strong effect in delaying the 

adjustment of the rival for these degrees of interaction. 

23 The procedure for calculating those numbers was stated in 
the last section. I followed an identiacal procedure for both the 
game- and the collusion case. 
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As we increase the fixed cost, we also see in Table 2 that, for a 

degree of sUbstitution less than or equal to .65, the difference in 

the average number of adjustments between the collusion case and 

the game decreases. All else being equal, at higher levels of 

fixed costs, the monopolists will try to economize. Hence, if 
.-' 

fixed costs are large, the monopolist will reduce the number of 

adjustments at a faster rate than the noncooperative duopolists do. 

This phenom~na closes the gap in the frequency of capital 

adjustments between the noncooperative duopolists and the 

monopolist. 

The results when (DB) equals. 7 , .75 and .85 are different. First, 

we note that the frequency of capital adjustment is higher for the 

game case than for the collusion case, although this difference is 

small. By looking at graph one and two, we see that the area of 

partial preemption is much smaller for low degrees of interaction 

than for higher degrees. Furthermore, as noted above, the impact 

of delaying the competitor's adjustment by preempting is much 

smaller for low degrees of interaction than for larger degrees. 
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TABLE 2 
COMPARISON IN THE NUMBER OF ADJUSTMEN'rS BETWEEN 

THE GAME AND THE COLLUSION CASE . 
B FIXED DEPRB DB AVERAGE AVERAGE DIFFERENCE 

COST NUMBER NUMBER IN ADJUST 
OF OF BETWEEN 

ADJUST . ADJUST . COLL. AND 
COLL • GAME GAME 

• 996 . 34 . 0l2 .58 143 139 4 

.6 147 140 7 

.65 149 144 5 . 
.7 150 152 -2 

.75 156 159 -3 

. 85 157 163 -6 

. 019 .58 193 182 11 

. 6 196 186 10 

.65 200 196 4 

. 7 200 200 0 

.75 208 204 4 

- . 85 208 217 -9 

. 5 .0l2 .58 127 122 5 

.6 128 125 3 

.65 128 128 0 

. 7 131 133 -2 

.75 133 135 -2 

.85 137 139 -2 

.019 . 58 169 161 8 

.6 169 166 3 

.65 172 172 0 

. 7 175 175 0 

.75 178 182 -4 

.85 182 185 -3 

........ 
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CONTINUATION TABLE 2 
COMPARISON IN THE NUMBER OF ADJUSTMENTS BETWEEN 

'THE GAME AND THE COLLUSION CASE , . 
B FIXED DEPRE DB AVERAGE AVERAGE DIFFERQCB 

COST NUMBER NUMBER IN ADJUST 
OF OF . BETWEEN · .. 

ADJUST. ADJUST. COLL. AND 
, . " ', '. .COLL. '. GUE GUE .. ".' 

.996 .67 .012 . 58 112 112 0 .. . . , . 
" 

.6 112 111 1 

.65 116 116 0 

.7 116 118 -2 

.75 119· 122 -3 

.85 121 125 -4 

.019 .58 150 149 1 

.6 151 149 1 

.65 153 153 0 
. .. 

. 7 154 158 -4 

.75 156 161 ";5 

.85 162 164 -2 

Note: The figures in the table above were calculated as an 
average of the one hundred initial conditions. The standard 
deviation, was in all cases very small . 

, . 
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9 WELFARE ANALYSIS. 
For all models, the frequency of capital adjustment is higher for 

the .social planner than for the game case. When we compare the 

social planner case with the game case, we ·must take into account 

the fact that the social p1anner wants to maintain, on average, 

the stock of capital at a ' higher level than the noncooperative 

duopolists. since depreciation is an exponential process24 , it 

erodes capital at a faster rate for higher levels of capital. 
.. 

This result .. implies a higher rate of adjustment for the social 

planner . Secondly, the externality mentioned before, in which 

both firms adjust capital in such a way to maintain the rival's 

capital as low as possible, delays the rate of adjustment of 

capital of the noncooperative duopolists when we compare it to 

the social planner's rate of adjustment. 

In table 3, I calculate the changes in the producer surplus 

resulting from a change in the rate of depreciation25
• A 50 

percent increase in the rate of depreciation generates a decrease 

in the producer surplus of approximately 4 to 7 percent . We note 

that as the rate of interaction goes down, the decrease in the 

producer surplus is larger. This conclusion is not surprising in 

24 In chapter three, the depreciation effect affected the 
social planner in the opposite direction. This was so, because the 
social planner wanted to maintain on average lower prices than the 
noncooperative duopolists. 

25 In some countries the governments can increase the r ate of 
depreciation artificially, by changing the tax policy. 
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view of the results found above. As the degree of interaction 

decreases, the firms preempt less , and · ther efore increase the 

frequency of investment. Consequently, we 

industries that · are almost me>!lopolies (i. e. 

conclude that in 

those that exhibit 

lower degrees of interaction), a higher rate of depreciation has 

a greater impact on producer surplus than in more oligopolistic 

industries. 

" _. '. 
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TABLE 3 AVERAGE CHANGES IN PRODUCER SURPLUS 

AFTER A CH1L~GE IN THE RATE OF DEPRECIATION. 

B FIXED DB MEAN STANDARD 
COST RATIO DEVIATION 

OF 
PRODUCER 
SURPLUS 

.996 .34 .58 0.961 0.000079 
\ 

. 65 0.960 0.000066 

. 75 0 . 957 0.000055 

. 85 0 .956 0 . 000046 

.5 .58 0.950 0.000117 

.65 0.949 0.000099 

.75 0 . 945 0.000083 

. 85 0.943 0.000073 

. 67 . 58 0.940 0 . 000159 

.65 0.937 0.000138 

. 75 0.934 0.000117 

.85 0.931 0.000105 
The f1gures above, were calculated as an average of the 
individual ratios Of producer surplus for each of the 10000 
nodes, when we increase the rate of depreciation from 0.012 to 
0.019. The numerator in the ratio. for each node, corresponds to 
the producer surplus after the change. 
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CONCLUDING REMARKS . 

I have studyied a capital accumulation game, where fixed costs are 

large enough to warrant inaction for some states for both firms, 

but small enough to warrant the accommodation of both firms in the 

market . 

My results are reminiscent of the literature on preemption. One 

firm will wait until the other firm is about to move. Then, in the 

instant before the competitor is willing to move, the firm adjusts 

its level of capital to the highest possible level achieved in the 

game. This further delays the adjustment of the rival in its level 

of capital. This behavior appeared consistently in all parameter 

models considered in this work. However, the impact of these 

policies appears to be larger for larger degrees of interaction. 

The introduction of fixed adjustment costs provides a new dimension 

in the analysis on quantity competition. In contrast with the 

former literature on the subject, where Hanig (1986) and Maskin and 

Tirole (1987), showed that, in equilibrium, symmetric firms will 

maintain the same level of capital above the collusion level, my 

research shows that, when we bring fixed adjustment costs into the 

analysis, the firms will not keep the same level of capital 'all the 

time. Rather, they will alternate in the level of of capital. 

Furthermore, if we accept the assumption that firms choose prices 

in such a way that they always produce at full capacity. This 
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model is a fully specified theory, that predicts alternations in 

market share. " This prediction was necessarily absent in the 

earlier literature. 

When I compare the social planner's solution with the game's 

solution, I conclude that the social planner ~djusts her variables 

more frequently relative to oligopolistic firms . This result stems 

from the fact that firms behave like "Stackelberg" leaders , and 

consequently try to delay the adjustments of the competitor. 

Secondly, since depreciation affects capital at an exponential 

rate, and the social planner wants to maintain a higher level of 

capital on average, depreciation further enhances the "Stackelberg" 

effect . 

with regard to the collusion case, I obtain mixed results. For a 

high degree of interaction (DBs.6 5 ) , the two- product monopoly 

(collusion) adjusts more frequently than the oligopolistic firms. 

This result follows from the fact that both firms try to behave 

like "Stackelberg" leaders , thereby delaying the adjustment in the 

competitor's capital for as . long as they can. They do so by 

adjusting right before the other firm wants to move . At the same 

time , the fact that depreciation is an exponential process forces 

the state to move towards the area of partial preemption ~ For 

lower degrees of interaction (DB> . 65 ) , the collusive outcome adjust 

less frequently than the oligopoly. For this case, the area of 

partial preemption is much smaller, and its effect in terms of 
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delaying the adjustment of the rival is less important. The 

Stackelberg effect is not strong enough to reverse the fact that 

. the monopolist internalizes the costs of adjustment. 

When we analyze the shape of the play set for the game case and the 

monopoly case, we note :that the optimal response function for both 

firms is higher for · the noncooperative duopolists than for the 

collusive solution. Furthermore, the boundary betweeri the trigger 

set for each firm and the continuation set, is located at a higher 

level in the game solution than in the collusion case. All else 

being equal, firms wait less time to adjust in noncooperative 

environments than in the fully cooperative one. 

'-" -'-. 



Appendix 1. 
As mentioned in the main text the computational approach works in 
two stages. First I solve for the Nash equilibria in a square 
lattice with ~qually distant points in both dimensions so that T 
in equation (1) is exactly satisfied for any point in the lattice. 
Second, I look for an interpolation method that satisfies the 
piecewise differentiability imposed by the discretization of time. 
In this second procedure I choose a finite dimensional basis and 
represent our approximated value function in this subspace. Then 
through the iteration procedure I map this finite dimensional 
approximation into another finite dimensioanl approximation until 
I reach a level in which v·' is reasonably similar to v·'. As 
mentioned in the tex I use bilinear cardinal function because they 
span the space of purely continuous functions c' when the size of 
the grid tends to zero (the number of points go up to infinity), 
and therefore satisfies the property of piecewise differentiability 
of the theoretical value function. Secondly, this basis gives me 
computational speed. By definition of the bilinear cardinal 
functions, the coefficients which accompany this basis in the 
representation of the value function, equation (13) , are just the 
value function calculated in the solution of the Nash Equilibria at 
each node surrounding the point of interest for evaluating the 
function. In other words, the difficult task is to calculate the 
cardinal functions. Once these are calculated the projection 
coefficients (the 41 in (13» are trivially determined. 

Given the properties of this model, it is not advisable to make 
use of the spectral methods that have been employed in economics to 
approximate the value function (See Judd 1990 (b». The use of 
Chebychev polynomials for example, imposes a degree of smoothness 
in the solution (C·) which is clearly undesirable for this 
problem. . 

As mentioned already, the interpolation function is found by 
looking in ·the space of .bilinear functions for a function that best 
interpolates the value function in each of the squares. The next 
step is to patch together all of the small approximations and get 
a global approximation of the value function. The result will be 
a c· function. 

More explicitly, follow.ing the technique of finite element, for 
each subsquare [x/ ,xt')X[x:,xt'], I use the information gotten from 
the first stage at each one of the nodes of this subsquare28

• I 
search for a bilinear function29 that best approximates the value 
function in this subsquare. In practice this is usually done by 
the use of the standard rectangle. The rectangle with vertices in 
the points (1,1), (-1,1), (-1,-1), (1,-1) • I map the value of x,. 

28 In the context of this model, 
only the values of the operator TV',1 

", 

this information comprises 
at each of the nodes. 

29 The class of bilinear functions is spanned by the monomials 
1 , x , y . ,and ... xy • 



and. x. . . to the standard rectangle by the following functions: 

( 
j+l .) 

{=1 2 x, -x, 
xj+l_X 

1 1 

2(x j +l -x) 
11 =1- 2 2 

. j+l 
" X 2 . - X 2 

, '-', 

~ .' 

The cardinal functions are given by the following expression: 

~, ({,11) =10 (1+{+11+{11) 
4 

~2 ({,11) =! (1-{-11+'11) 

~3 ({,11) =! (1-{+11-'11) 

~4 ({,11) -! (1+{-11 -{11) 

We notice immediately that 4>,-1 when ,-1 and ,,-1 . 4>,-1 when 
,--1 and ,,-1. 4>,"1 when ,--1 and ,,--1 . Finally 4>,-1 , when ' ,-1 and ,,--1. The interpolant to the data '1'1/',1 (xt', xt') , 
'1'I/',j (xl,xt') , '1'I/',j (xl,x:) and '1'I/',j (xt',xJ) · is given by the following 

equation : 

B (C 11) _TV',j (xt' , xt') ~, (C 11) +TV',j (xt, X:+l) ~2 (C 11) 

+TV',j (X,i , X2k) ~3 (C 11) +TV',j (xt' , xtl ~3 (C 11) 

Given the linearity of the approach, in addition to the fact that 
the axes are parallel to the subsquares, there is a unique surface 
that interpolates the whole grid (see Lancaster and Salkauskas 
1986) • 

As mentioned in section 2.1.3, an important property of this model 
is that the optimal response function of firm i, 5', is 
independent of the state in which the firm is located. It only 
depends on the other firm's state. This property holds because the 
cost of adjustment function of the state is linear. This 
characteristic allows me to speed up the calculations in the 
computer. since I am assuming that the operator '1'I/',j (" .) is co, 

. in order to calculate the optimal response function S;( . ) whenever 
firm one is moving I use a golden section algorithm . While one 
shortcoming of this algorithm is its speed, it is the only 
algorithm available for CO functions. 

It is interesting to point out that the uniqueness of the 
interpolating polynomial is not maintained when I try to 
approximate the surface with polynomials of higher degree. For 
instance, if I use bicubic splines, some conditions on the second 
derivative have to be imposed. Additionally, for polynomials of 



higher degrees, the cardinal functions do not . possess the small 
support property. In the linear case, the rational fOr using the 
cardinal functions is that they poss~ss the same nice properties as 
the B splines functions. In higher degrees, the Cardinal functions 
may not be easy to construct. The calculation may involve the 
inversion of a Vandermondian matrix, which we know is a dangerous 
procedure (see Lancaster and Salkauskas (1986». 
Consequently, if I want to extend the interpolation method to 
polynomials of second degree,- and hence allow for a higher degree 
of smoothness in the value function-, I should use B splines, 
since they maintain the. small support property and permit a more 
efficient the approximation. 

. :-
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