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TESTS FOR MULTIVARIATE NORMALITY OF OBSERVATIONS AND RESIDUALS 

Carlos M. Urzua 

EI Colegio de Mexico 
and 

Woodrow Wilson School, Princeton University 

This paper provides readily computable tests for multivariate normality of 
both observations and residuals of simultaneous equation models. They are 
derived by considering as the alternatives t o the multinormal a class of 
"likely" multivariate distributions studied elsewhere by the author. The 
tests, being derived using the Lagrange multiplier procedure, have optimum 
asymptotic power . Furthermore, they include, in the case of a single 
variable, the popular Jarque-Bera (Bowman-Shenton) test for univariate 
normality. 



1. INTRODUCTION 

Since the pioneering work earlier this century by, among others , K. 

Pearson, R. Fisher and J. Wishart, the assumption of multivariate normality 

has played a key role in many methods of multivariate analysis. Handy as the 

assumption is, however, the consequences of departure from multlnormality are 

documented to be quite serious for several multivariate methods (e.g., linear 

discriminant analysis). The judgment stil l awaits for more evidence in t he 

case of other methods, simultaneous equation models being a case in point, 

but , in principle, the consequences could be serious as well. This can be 

surmised in cases such as simultaneous equation models, where the vio lat ion of 

the multinormality assumption may lead to inefficient estimators and invalid 

inferences. 

Given the obvious importance of the multinormality assumption, it is thus 

somewhat surprising that for many years most researchers either ignored it, or 

were contented with the evaluation of marginal normality (which, of course, 

does not necessarily imply joint normality) . One can argue that it was only 

until Mard ia (1970) presented a simple test based on multivariate measures of 

skewness and kurtosis that the issue of testing for multinormality gained some 

favour among researchers. That this favour has grown since then can be 

attested by the burgeonIng current literature on the subject (see the su r veys 

by Mardia (1980) and Small ( 1985» . 

The purpose of this paper is to provide readil y computable tests for 

multivariate normality of both observations and residuals of simultaneous 

equation models. They are derived by considering as the alternatives to the 

multinormal a class of. "likely" multivariate dist ributions introduced in Urzua 

.. 
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(1988). The tests, by being derived using the I.neranga multiplier procedure, 

have optimum locally asymptotic power among those alternatives . Thus, they 

distinguish themselves from other ad - hoc tests in the literature that are 

simply patterned as the extensions of tests for univariate normality. This is 

not meant to deny the practical advantage of having mUltivariate tests with 

such property, for in fact the tests proposed here are the multivariate 

counterparts to the popular Jarque-Bera test for univariate normality (Jarque 

and Bera (1980, 1987». 

The paper is organ ized as follows: Section 2 reviews several of the 

properties that characterize the Q-exponentia l distributions, and presents 

some basic results for use in later sections. Section 3 derives the Lagrange 

multiplier (LM) test for multivariate normality under 'the premise that the 

alternatives to the multinormal are other Q-exponentials. It also provides, 

via a Montecarlo study, empirical significance points for the LM test 

statistics when the sample size is small. Section 4 then presents test 

statistics for multivariate normality of residuals of simultaneous equation 

models. Finally, Section 5 outl ines several extensions to the results 

presented here (and that will appear elsewhere). 

2. LIKELY ALTERNATIVES TO MULTIVARIATE NORMALITY 

In his authoritative paper on significance tests written in the seventies, 

D. R. Cox complained about the inexistence of "a simple and general family of 

distributions to serve as alternatives [to the multinormalj" (1977, p. 56). 

This sect i on reviews a class of multivariate distributions, taken from the 

multivariable exponential family and studied in Urzua (1988), that could play 
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that role. 

The distributions are the mUltivariate generali zat ion of the still now 

relatively unknown distributions introduced by R. A. Fisher (1922). Defined 

over the real line, Fisher's univariate densities are of the form 

(2.1) f(x) ~ ~(o)exp(-Q(x», Q(x) ~ o,x+o2,!+ " .+ok'l, 

where k is an even number. ok > D. and ~(o) is the constant of normalization 

given the vector of parameters o. Aside of course from the norma l (obtained 

when k - 2). the densit i es in (2 . 1) were considered to be o f little interest 

for many years. More recently. however. there has been an increasing interest 

on them since they playa key role in Cobb's stochastic catast rophe theory 

(see Urzua (1989a) and references therein). Furthermore. as Zellner and 

Highfield (1988) have strikingly i llustrated in the case of the quartic 

exponential (obtained setting k - 4 above). Fisher's distributions are 

flexib l e enough. and simple enough. to act as bona fide approximations to 

other univariate distributions. 

We now turn to their multivariable counterparts. Let x denote the real 

column vector (x, •. . .• xp)' . If Q(x) is a polynomial of degree k in the p 

variables. then it can always be written. ignoring the constant term. as 

k 
(2.2) Q(x) - 1: Q(q)(x). Q., 

where Q(q)(x) is a homogeneous po l ynomial (a form) of degree q. Namely . 

(2 . 3) 

with the summation taken over all nonnegative i nteger p-tuples (J , • . . • • Jp) 

such that J , + • • . +jp - q. The polynomial Q will be assumed to be such that 
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g(x) • exp(-Q(x» is integrable on the entire Euclidean space RP (a necess ary 

condition for th i s to happen is that the degree of Q(x) relative to each x, is 

an even integer). 

Following Urzua (1988). the continuous random vector X = (X" ...• Xp) is 

said to have a p-variate Q-exponential distribution with support ~ if its 

density is given by 

(2.4) f(x) - ~(a)exp(-Q(x». -~ < x, < m. i - 1, ... ,p, 

where ~(a) is the constant of normalization. 

For the sake of simplicity, it will be often implicitly assumed below that 

the polynomial Q is of degree k relative to all of its components. In such a 

case, several important distributions emerge: If k u 2, then the p-variate 

normal is obtained; while when k = 4 and k • 6 the p-variate quartic and 

sextic exponentials are obtained. 

Note also that as k is increased the numbe r of coefficient s required by 

the corresponding Q-exponential increases at an inc reasing rate. In fact, as 

can be readily shown (see Urzua (1988, p. 4042», if K(p,k) denotes the 

maximum possible number of parameters of a p~variate Q-exponential , then 

(2.5) K(p,k) • C(p+k,k)-l, 

where C(p+k.k) is the binomial coefficient (p+k)!/(p!kl). In particular. the 

number of possible coe fficients in the homoge neous polynomial of degree q 

given in (2 . 3) above is C(p+q-1.q). 

It is now time to introduce a key characteristic of the Q-exponential 

distributions. Consider all densities f relative to Lebesgue measure that 

have support S = ~ and have finite population moments of s ome predetermined 
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orders. That is, they satisfy constraints of t he form 

P J 
(2.6) E!ITX'm) 

1. 1 I 
c: em' m· I, ."Jr, 

whet"e each j 1m is a predetermined nonnegative integer, and c j , •• . , cr 'is a 

sequence of real numbers. For each density we define, following Shannon 

(1948), the entropy of f as 

(2.7) H(f) R -IS f(x)log[f(x)]dx. 

It can be shown (see Urzua (1988, Proposition 2») that, among the 

densities satisfying (2.6), if there is a density that maximizes Shannon's 

entropy, it is necessarily a Q-exponential of the form 

f(X) - ~(a).xp(-Q(x)), with Q(x) 

For instance, the . p-variate quartic exponential maximizes the entropy among. 

the distributions with support RP that are known to have finite moments up to 

ot"der four; likewise , as Shannon (1948) in his influential "paper first proved, 

the multinormal maximizes the entropy among the distributions that have second 

order moments. 

Thus, when the only known information about a distribution is the 

existence of population moments of some orders, the Q- exponentials can be 

considered to be the "most likely to be true". This at least according to the 

maximum entt"opy principle, which states that "in making inferences on the 

basis of partial information we must use that probability distribution which 

has maximum entropy subject to whatever is known" (Jaynes (1957,p. 623» . 
• 

There is a second characteristic of the Q-exponentials , that is also 

t"elevant for our purposes. It can be shown that, near the multinormal, 
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already the quartic exponential is capable of approximating as close as needed 

the van Uven- Steyn multivariate Pearson family (see Urzua (1988» . This is 

interesting because the latter family, although made of distributions more 

complex (and suspect) than the Q-exponentials. could be thought by some to 

constitute a class of possible alternatives to multinormality (in fact. Bera 

and John (1983) have used such a family to derive tests for mUltinormality). 

B~fore concluding this section, it is worth briefly mentioning other 

interesting properties exhibited by the Q-exponential distributions that. 

although not directly relevant for this paper, he lp to illustrate furthermore 

the generality of the distributions (see Urzua 1988 for details): First. they 

can exhibit several modes. and they do so with a relatively small number of 

parameters (as compared to mixtures of multinormals). Second, they a r' e the 

stationary distributions of certain mUltivariate diffusion processes. Third. 

the Maximum Likelihood (ML) estimators of their population moments are the 

sample moments (as can be directly Seen from equation (3.2) below). And 

fourth. using the method of moments one can easily obtain consistent 

estimators for the parameters of the Q-exponential distributions. 

3. TESTS FOR NORMALITY OF OBSERVATIONS 

Let X be a p.l random vector following a Q-exponential distribution. 

Consider a set of n observations {x, •...• xn! on X. The corresponding log-

likelihood function L(a) can then be easily shown to be 

(3.1) L(a) _ -nlog[J 7 .. J m exp(-Q(x»dx! _w _~ 
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Moreover, the components of the gradient (score) of L(a) are of the form 

(3.2) 
p J I 

R nE{ 11 X, ) 
1·1 

while the elements of the Hessian of L(a) are of the form 

(3.3) 
P J,tk , 

- -nIE! 11 X, } 
1-1 

p J I 
- E{ 11 X, IE{ 

I.' 
P k, 

11 X, ) I ; 
1·1 

that is, Fisher's information matrix is simply made of covariances of products 

of the random components. 

It will prove useful to transform the random vector X to a random vector Y 

having zero mean and the identity matrix as the covariance . Let ~ and ~ be 

the mean vector and the covariance matrix of X. Let r denote the orthogonal 

matrix whose columns are the standardized eigenvectors of ~, and A denote the 

diagonal matrix of the respective eigenvalues of E. Define ~-112 as the 

inverse of the square root decomposition of ~; that is, ~- 112 ~ rA-1I2r'. Then 

the random vector 

(3.4) 

follows a p-variate Q-exponential, with Q(y) as in (2.2) and Q(q)(y) as in 

(2.3). It has a zero mean vector, and an identity matrix as its covariance 

matrix. 

Let the K(p,k).l vector of parameters of Q(y) be denoted as a where K(p,k) 

is given in (2.5) above. Suppose now that a is partitioned as a - (9 1',9Z')" 

where 91 is the C(p+l,2),1 vector of parameters of the homogeneous polynomial 

Q(Z)(y). The hypothesis of multinormality can be then assessed by testing the 

null hypothesis Ho: 92 - O. There are several asymptotic tests available for 
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that purpose (see, e.g., the survey by Godfrey 1988). Given the comple'xity of 

the alternatives considered here, the Lagrange Multiplier (LM) test (Reo 1948, 

and Aitchison and Silvey 1958) wiil be used below, for it only requires the 

estimation of the restricted model under the null hypothesis. 

In order to give an expression for the LM statistic, it is necessary to 

introduce some notation. Let 9(0) be the gradient (score) of the 108-

likelihood function, and let I be the information matrix. Given the partition 

of 0 as (Gi,e2)' the score can be written as s(o) ~ (si,s2)" wi th s) -

aL(o)/ae), j • 1,2; while the information matrix can be partitioned into four 

submatrices of the form 1/) • E{-a2L(0)/aS j a9Jl. i,j • 1,2 . 

Let now (9,,0) denote the restricted maximum likelihood estimator for a -

(9;,92 )'; that is, 9, is the maximum likelihood estimator for 9, after ' 

imposing the constraint 92 • O. Let also s • s( 9,,0) and I • I (91' 0) . 'Then 

the Lagrange multiplier statistic is defined as LM • ~i-'~/n, or, taking 

advantage of the fact that ", • 0, 

(3.5) 

LM is under HO asymptotically distributed as a ~, a Chi-square with degrees 

of freedom v equal to the dimension of the vector 92, 

Given the complexity of the alternatives to multlnormality considered 

here, the computat i on of the LM statistic would appear to be a daunting task. 

However, as Gart and Tarone (1983) has shown, the LM test can be trivially 

found in the case of distributions coming from an exponential family (as the 

Q-exponentials do). Following their reasoning , it can be shown that the 

statistic can be constructed as follows. (For simplicity we will assume from 

now on that the quartic exponential is the alternative distribution with the 
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highest degree. although the result can be trivially extended to the general 

case.) 

First transform the original observations on X, Let x and S be the 

sample mean vector and the sample variance-covariance matrix found using the 

set of observations (xl •...• xn). Let G denote the orthogonal matr ix whose 

columns are the standardized eigenvectors of S. and D denote the d iag onal 

matrix of the eigenvalues. Using. S-112 - GD-1/2G·. transform the observations 

as follows, 

(3.6) 

Define next 

n n 
L YrtYrjYrkln and R/jkq • 
r· 1 

L YrlYrjYrkYr/n. 
r· 1 

Then the LM test statistic is simply given by ' 

(3.7) 
P 

LMp • n[ L Q~,,/6 + 
Ie 1 

p 

L Q~Jk + 

IrlJko1 
< <k 

p 

L (R" ,,- 3)2/24 + 
1. 1 

rc!, . .. ,n . 

where the statistic LMp is asymptotically distr ibuted as a ~. with degrees of 

freedom v • p(p+i)(p+2)(p+7)/24. The Appendix presents both a GAUSS program 

and a FORTRAN program that compute the LM test statistic for any dimension p. 

For large samples. the hypothesis of p-variate normality of observations 

is rejected at some significant level (usually taken to be 10%) if the value 

of LMp exceeds the corresponding critical value of the~. For small samples. 
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however, the critical value derived from a Chi- " quAre is far from being 

adequate, and a Montecarlo study is called forth . This was impl emented for 

the case p - 2 using 10000 replications. The results t hus obtained are 

reported in Table I. (Montecarlo studies for higher dimensions are currently 

being undertaken . ) 

Note as a final point that in the univar iate case the LM statistic can be 

expressed in terms of the standardized third and fourth moments, given by fbI 

• m3/rn~12 and b2 • m/~ where the i-th central moment m, equals E(xr;;')'/n, as : 

(3.6) 

Th is statistic has been proposed by Bowman and Shenton (1975), and by Jarque 

and Bera (1960 and 1967). The former authors suggested the use of this 

statistic as the simplest possible omnibus test for norma lity since, under the 

null, the asymptotic means of fbI and b2 are r espectively a and 3, their 

asymptotic variances are 6/n and 24/n, and their asymptotic covariance is 

zero . While the latter authors found (3 .8) to be the LM test statistic 

obtained when the alternatives to normality are in the Pearson fami ly. 

4. MULTIVARIATE NORMALITY OF RESIDUALS OF SIMULTANEOUS EQUATION MODELS . 

Consider now the case of the linear st ructural model 

(4.1) r- l .... ,n, 

where Yr is a pxl vector of observed endogenous variables, zr is a kxl vector 

of observed predetermined variablee, ur is a p xl vector of unobse rved 

disturbances, B is a pxp nonsingular matrix of coefficients with ones in its 
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diagonal, and r is a p.k matrix of coefficients . All identities are assumed 

to be substituted out, and the system i s assumed to be identified through 

exclusions in Band r. Assume furthermore that the alternative to the 

possible p-variate normal distr i bution of u, is a p- variate quartic 

exponential. 

Suppose first that the system is estimated using full i nf ormation maximum 

likelihood (FIML) under the assump t ion of multivar iate normality. Follow ing 

the reasoning in the last section, one can construct an LM test for 

multivariate normality of the residuals as follows . Let U, denote the 

estimated FIML residuals of the structural equations (one could Similarly use 

the estimated residuals of the reduced form). Using the transformation 

S-II2U,, where S-112 is given as i n (3.6) last section, define next 

n 
~ erle,)e'k/n and W/)kq • 
r,l 

n 

~ erle,)e'ke,/n . 
r· l 

e -r 

Then the LM test statistic for multinormality of t he residuals is given by. 

LMN,p • n[ 

p 

~ V~)k + 
I rJJk=l 

< <k 

p 

D 

~ (WII 0-3 )2/24 ... 
1· 1 

~ W~I)/2 + 
1. J.k-1 

I~J, i,lk .j<k 

where the statistic LMN,p is asymptotically d i stributed as a ~, with v -

p(p+l)(p+2)(p+7)/24. 

But what If, as is usually the case, the system is not estimated by FIML , 

but rather by some other method (e .g., 2SLS)? Provided the method renders 

consistent estimators, one can use the corresponding LMN,p constructed using 
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the estimated residuals of the structural equations (0r, equivalRntly, the 

estim~ted residuals of the reduced form equations). This is so because, 

following White and MacDonald (1980), one can show that the statistics 

constructed using the estimated residuals are consistent estimators of the 

true statistics. 

As a final point, it is important to realiza that, in the case of small 

samples, one cannot use the empirical significance points given in Table I. 

The reason is that the small sample properties of LMN,p can be shown to depend 

in general on the particular design matrices of each simultaneous equation 

system. In any case, it is quite straightforward to write a program to 

estimate, via Montecarlo simulation, the significance pOints for any LMN.
P

. 

5. FURTHER EXTENSIONS 

Three extensions to the results presented above are reported here. First, 

using the same LM test procedure, and maintaining the hypothesis of Q

exponentials as the alternative distributions, tests for the multinormality of 

residuals of simUltaneous limited dependent variable models (including as 

particular cases the typical univariate models) are given in Urzua (1989b). 

Second, following the literature on multivariate generalized linear models, 

Urzua (1989c) considers simultaneous equation models in which residuals are 

now explictly allowed to follow general Q-exponentials. And third, some 

initial steps (in the univariate case) are currently being undertaken by the 

author to derive algorithms to transform from Q-exponentlals to the normal 

distribution. 

12 

n 



APPENDIX: GAUSS AND FORTRAN PROGRAMS TO COMPUTE THE LH TEST STATISTIC 

The following procedure written in GAUSS 2.0 returns the value of the LH ' 

test statistic . The argument of the procedure is the matrix of observations x 

with size n.p (instead of pxn as in the text), for any p ~ 1. 

proc Imnstat(x); 
local g,i,j,k,lm,q,s,u,v,va,ve,Yj 
s-moment(x-meanc(x) ',O)/rows(x); 
(va,ve]-eigrs2(s); 
g-ve*diagrv(eye(cols(x»,l/sqrt(va»*ve'I 
ya(x-meanc(x)')*g; 
lm=sumc(meanc(y A3)A2)/6+sumc«meanc(yA4) - 3)A2)/24; 
i-I; 
do while i<cols(x); 

J-1+1; 
do while j<-cols(x); 

u-y [ . , i] . *y [ . ,j ]; 
lm=lm+(meanc(u.*y[.,i])A2+meanc(u.*y[.,J])A2)/2; 
lm-lm+(meanc (u. 'y[. ,i] A2) A2+meanc(u. 'y[ . ,j ] A2) A2) /6; 
lm-lm+(meanc(u.*u)-1)A2/4; 
k-j +1; 
do while k(-co!s(x); 

v-u.*y [. ,k]; 
lm=lm+meanc(v)A2+meanc(v.*y[.,i])A2/2; 
lm-lm+(meanc(v.*y[.,j]) A2+meanc(v.*y[.,k])A2)/2; 
q-k+l; 
do while q(-cols(x); 

Im-lm+meanc(v.*y[.,q])A2; 
q~q+ 1; 

endoj 
lc- k+ 1 ; 

endo; 
j-j+1; 

endo; 
i-1+1; 

endo; 
retp(lm*rows(x»: 

endp; 

The next subroutine written in FORTRAN 77 returns the value of the LM test 

statistic as ST . The subroutine requests the number of dimensions P, the 

sample size N, and the NxP matrix of observations X. It also requests the 
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largest expected I' and N as MP and MN. It requires anothe,r subroutine to 

compute the eigenvalues and the normalized eigenvectors of a P xp real 

symmetric matrix . 

SUBROUTINE LMNTEST(P,N , X,MP,MN,ST) 
INTEGER P 
DIMENSION X(MN,MP),Y(MN,MP),S(MP,MP),G(MP,MP),D(MP) 

C 
C Transformation of the data matrix 

DO 3 I-1,IP 
SUM- O.O 
DO 1 J - l,N 

1 SUM~SUM+X(J , I) 
DO 2 J-1,N 

2 X(J,I)~X(J,I)-SUM/N 

3 CONTINUE 
DO 5 I -I, IF 
DO 5 K-I,IF 

SUM- O.O 
D04J- l,N 

4 SUM~SUM+X(J,I)'X(J,K) 

S(I,K)-SUM/N 
5 S(K,I)-S(I,K) 

IF (IP.GT.1) THEN 
C 
C The next line calls a subroutine (based on, say, the Jacobi method ) that 
C returns the eigenvalues and the normalized eigenvectors of the sample 
C covariance p.p mat rix S. The eigenvalues are returned by the vector D, 
C and the eigenvectors by the matrix G. 

CALL JACOBI(S,IP,MP ,D ,G) 
DO 7 I-1,IP 
DO 7 K~I,IP 

SUM- O.O 
DO 6 J=l , IP 

6 SUM~SUM+G(I,J)'G(K,J)/SQRT(D(J» 
S(I,K) - SUM 

7 S(K,I) - S(I,K) 
ELSE 

S(l,l)-l/SQRT(S(l,l» 
ENDIF 
DO 9 J-1,N 
DO 9 I~l,IP 

SUM- D. 0 
DO 8 K-l, IF 

8 SUM~SUM+X(J,K)'S(K,I) 
9 Y(J,I)-SUM 
C 
C Computation of the test statistic 

ST~O.O 

DO 17 I - l,IP 
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SUM1-0 . 0 
SUM2-0.0 
DO 10 J - 1,N 

SUM1 -SUM1+Y(J,I)** 3 
10 SUM2-SUM2+Y(J,I) •• 4 

ST-ST+«SUM1/N)**2)/6.0 
ST-ST+«SUM2/N-3.0)**2)/24 . 0 
DO 16 K-I+1,II' 

SUM1 - 0.0 
SUM2-0 . 0 
SUM3-0.0 
SUM4- 0.0 
SUMS-O.O 
DO 11 J-1,N 

PR1~Y(J,I)*Y(J,K) 

SUM1-SUM1+PR1*Y(J,I) 
SUM2-SUM2 +PR1*Y(J,K) 
SUM3 - SUM3+PR1* *2 
SUM4-SUM4+PR1*Y(J,I)**2 

11 SUMS-SUMS+PR1*Y(J, K)**2 
ST-ST+«SUM1/N)**2)/2.0 
ST- ST+«SUM2/N)'*2)/2. 0 
ST-ST+«SUM3/N-1.0)'*2)/4 .0 
ST-ST+«SUM4/N)··2)/6 . 0 
ST- ST+«SUMS/N)**2)/6. 0 
DO 15 L- K+1, II' 

SUM1 - 0.0 
SUM2-0.0 
SUM3-0 .0 
SUM4- 0.0 
DO 12 J-1,N 

PR2-PR1*Y(J,L) 
SUM1 - SUMl +PR2 
SUM2-SUM2+PR2*Y(J,I) 
SUM3-SUM3+PR2*Y(J,K) 

12 SUM4-SUM4+PR2*Y(J ,L) 
ST-ST+(SUM1/N)**2 
ST-ST+«SUM2/N)**2)/2.0 
ST-ST+«SUM3/N)·*2)/2.0 
ST-ST+«SUM4/N)·*2)/2.0 
DO 14 M- L+1,Il? 

SUM1=O . O 
DO 13 J=1,N 

13 SUM1-SUM1+PR2*Y(J,M) 
14 ST-ST+(SUM1/N)*.2 
15 CONTINUE 
16 CONTINUE ,', 
17 CONTINUE 

ST-N'ST 
RETURN 
END 
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TABLE I 

SIGNIFICANCE POINTS OF THE LM TEST STATISTIC FOR BIVARIATE NORMALITY 

Sample Sample 

Size a •• 10 Size a - .10 Ratio 

10 7.47 0.48 65 13.75 0 . 88 

15 9.54 0.59 80 14.11 0 . 89 

20 10.61 0 . 66 100 14 . 15 0.91 

2S 11.54 0 . 72 150 14 .6 6 0 . 94 

30 12 .08 0. 76 200 14.66 0.96 

40 12.90 0.81 300 14 .69 0.98 

50 13. 18 0.84 ~ 14.68 1.00 

aRatio of empirical to asymptotic mean value •. 

Note : A rough approximati on for critical value. at a significance level ' 
other than a • . 10 can be found multiplying "Ratio" times the critical value 
of the corresponding Chi-square [i.e., ~,a >lith v • p(p+1) ( p+2)(p+7)/24). 
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