

Serie documentos de trabajo

TERMS OF TRADE AND CLASS CONFLICT IN A COMPUTABLE GENERAL EQUILIBRIUM MODEL FOR MÉXICO

Bill Gibson UMass Amherst

Nora Lustig El Colegio de México

> Lance Taylor MIT

DOCUMENTO DE TRABAJO

Núm. VI - 1982

Terms of Trade and Class Conflict in a Computable General Equilibrium Model for Mexico

Abstract:

A computable general equilibrium model for Mexico is constructed in which class conflict over the distribution of the surplus is the principal determinant of the terms of trade. The model consists of seven social classes and eight productive sectors, Classes are distinguished as "fundamental" or "subsumed" according to whether their incomes are primarily determined by conscious class struggle or by the resulting system of relative prices. Flexible prices are assumed to clear markets for which nonproduced means of production, such as agricultural land, limit supply while output in the remaining sectors is determined by the level of effective demand. For the latter sectors, two theories of price formation are compared and are seen to differ radically in their implicit conception. of the nature of class conflict. A "Keynes-Kalecki" closure is considered in which prices are determined by a fixed mark-up on costs. This enables capitalists to protect themselves from incursions on the rate of profit due to labor militancy or state-imposed terms of trade policy designed to favor peasants and/or the agrarian bourgeoisie. A second, "Marxian," price closure constrains the economy to a wage-profit-terms-of-trade surface; where the economy conjuncturally resides on this surface depends upon the level of effective demand, wages and terms-of-trade policy. Various scenarios are investigated under both closures including an increase in nonagricultural wages, a rise in investment and the introduction of a quarantee price for corn and beans, a policy implemented by the Lopez-Portillo regime.

Bill Gibson Economics, UMass Amherst, MA 01003 (413) 545-2036 Nora Lustig CEE, El Colegio de Mexico, Mexico, D.F. (905) 653-6033 ×183 Lance Taylor Economics, MIT, Cambridge MA 02139 (617) 253-5120

February 1983

I. Introduction

This paper discusses a computable general equilibrium model for Mexico and its behavior in response to a change in wages, level of investment and terms of trade policy.[1] Two variants of the model are studied. For the first, referred to a "Keynes-Kalecki" or "Keynesian" closure, nonagricultural prices are determined by fixed mark-ups on prime costs.[2] The profit rate is insulated from wage and commodity price increases which are fully passed along. A second "Marxian" closure employs Sraffian prices of production for nonagricultural sectors in which class conflict over the distribution of the surplus determines the system of relative prices.[3] Substantial differences emerge: In the Marxian closure, for example, unemployment and stagnation can be combated by maintaining aggregate demand, <u>raising</u> wages and controlling prices whereas in the Keynesiar closure, increasing wages causes inflation, agricultural stagnation and a contraction in employment.

The paper is organized as follows: Section 2 discusses the basic components of the model in a simplified form. The following section describes the model in more detail and the final section presents the results of simulations in which nonagricultural wages and real investment are changed and a support price for the peasant agricultural sector is introduced. Appendices contain the full specification of the model and Social Accounting Matrices for the various simulations.

2. Structure of The Model

A general equilibrium model is employed in which prices and quantities are determined simultaneously. We distinguish sectors of the economy which employ nonproduced means of production (NPMP), such as natural resources and agricultural land, from those sectors which use only reproducible capital goods as means of production.[4] For convenience, sectors which employ nonproduced means of production will be referred to as "agricultural" sectors while the remaining sectors will be called "nonagricultural" or "urban" sectors. Prices of goods produced using NPMP are not necessarily equal to their costs of production, but fluctuate to

balance effective demand with an exogenously given supply. Prices in sectors which do not employ NPMP are equal to the sum of wage and intermediate costs plus profits. If profits depend upon a fixed mark-up, independent of the level of wages, the closure is <u>Keynesian</u>. If instead there is an inverse relationship between wages and the rate of profit, the closure is referred to as <u>Marxian</u>.

In both the Keynesian and Marxian closures, output in nonagricultural sectors is determined by the level of effective demand with real investment given exogenously. For the Marxian system, output of sectors which only employ produced means of production is not limited by any endowed magnitude other than labor inasmuch as capital is conceived as the accumulated surplus product of workers. Capitalists exploit workers by virtue of: (1) private ownership of the means of production; and (2) a surplus or reserve army of unemployed workers. Capitalists can, therefore, expand output to meet demand subject only to the social constraint that the <u>rate</u> at which surplus product is extracted is above some minimum acceptable level. For the Keynesian closure, output in the nonagricultural sectors is determined by the level of effective demand only if there is <u>excess capacity</u> with respect to the current level of output. With a fixed stock of capital equipment and a given level of money wages and agricultural commodity prices, output may adjust to effective demand with no accompanying change in price.

In neither closure is the labor market assumed to clear. Capitalists have available an arbitrarily large supply of labor at the institutionally determined money wage rate. There is no choice of technique and thus employment is determined by fixed and given labor coefficients once outputs are known. There is no money and, needless to say, no "capital" other than the heterogeneous vector of produced and nonproduced means of production.

2.1 Class Structure--Marxian Closure

The introduction of nonproduced means of production requires a more complex structure of classes than than the typical Marxian division into capitalists and workers. Owners of nonproduced means of production constitute what Resnick and Wolff call a "subsumed" class and are distinguished from "fundamental" classes by the following definitions:

Marx's theory of the class process of extracting surplus labor involves the conceptual division of individuals in society into paired groupings occupying the positions of performers of such surplus labor, on the one hand, and extractors, on the other. These paired groupings we designate, with Marx, as <u>fundamental classes</u>. (emphasis added)

Subsumed classes, on the other hand, are defined as classes which:

...neither perform nor extract surplus labor. Rather they carry out certain specific social functions and sustain themselves by means of shares of extracted surplus labor distributed to them by one or another fundamental extracting class. (Resnick and Wolff 1982: 2,3)

The essence of the definition of subsumed class is taken here to be the distinction between "extract" and "distribute." By wresting title to and control over the disposition of the surplus product produced by workers, capitalists "extract" surplus from workers. The process is one of open and continuous conflict in which both workers and capitalists consciously pursue strategies designed to thwart their opponent's objectives. Fundamental classes exhibit what Jon Elster has recently termed "variational rationality" in which agents do not regard their environment parametrically, but are aware of the objectives, strategies and tactics of other agents (Elster 1982).

The outcome of conflict between fundamental classes determines a point on the economy's wage-profit or class-conflict line. [5] Associated with every such point is a vector of relative prices which "distributes" or transfers extracted surplus to various subsumed classes. In contrast to fundamental classes, subsumed classes are <u>parametrically rational</u> in that their behavior, while rational, is not strategically or interactively determined. Subsumed class incomes depend primarily upon <u>terms of trade</u> resulting from the struggle between fundamental classes, terms of trade which they regard as given parameters. Thus, subsumed classes neither perform nor extract surplus labor. Subsumed classes reduce the total quantity of surplus over which the fundamental classes struggle but the transfer is systemic in nature. The process occurs "behind the backs of the producers" in spite of rather than as a result of the intentions of agents. This is not to suggest that the income of fundamental classes is independent of the the structure of relative prices. It is

rather that without engaging in class struggle, fundamental class income would presumably fall to zero no matter what system of relative prices was in force. Subsumed classes, on the other hand, share in the total surplus as a matter of structural rather than strategic necessity.

Note that while all owners of NPMP are subsumed, not all subsumed classes need own nonproduced resources. Petty-commodity producers, for example, do not have access to NPMP means of production yet nevertheless qualify as subsumed under the definition cited above. Petty-commodity producers may be conceived as users of alternative production processes which are not operated by capitalists since these methods fail, at prevailing prices and wages, to return an average rate of profit. Petty-commodity producers are subsumed in that their incomes depend not on their own strategic behavior but on the existing system of relative prices. By operating alternative low- or no-profit processes, petty-commodity producers are able to capture a portion of aggregate demand that would otherwise accrue to capitalists selling the same good.

Competitive forces cannot eliminate petty-commodity producers from absorbing a share of aggregate demand. If capitalists attempt to increase their market share by lowering prices, petty-commodity producers must follow suit since they have no other means by which to reproduce themselves. If aggressive price competition causes petty-commodity incomes to fall below subsistence, they may shift from one branch of production to another; but the existence of a reserve army employed by noncapitalist processes always reduces the appropriable surplus for capitalists for any level of aggregate demand. Petty-commodity producers therefore take a "cut" from the total surplus and consequently qualify as subsumed.

2.2 A Simplified Model

In this section we discuss the logical structure and functioning of the model; the details of the empirical specification for Mexico are taken up in the following section. Consider now an economy with n commodities the production of which requires land or other resources as part of their means of production; in addition, there are m commodities which require only produced means of production. Let $P_1 = \{p_{j_1}\}$ and $X_1 = \{x_{j_1}\}$, (i = 1,2,...,n) be the prices and quantities of commodities which use NPMP; $P_2 = \{p_{j_2}\}$ and $X_2 = \{x_{j_2}\}$, (i = 1,2,...,n) are the prices and quantities of the remaining sectors of the economy. A = $\{a_{i_1}\}$, (i,j =

1,2,...,m+n) is the matrix of input-output coefficients which indicate the amount of good i used in the production of one unit of good j. A = (A_{ij}) , (i, j = 1, 2) is the partitioned matrix with subscripts 1 and 2 referring to commodities which use and do not use nonproduced means of production respectively. The vectors of intermediate demands, $XD_i = (xd_{ij})$, (i = 1, 2, ..., n) and $XD_z = (xd_{zj})$, (i = 1, 2, ..., m) can be written as:

(1)

$$XD_{i} = A_{i} X_{1} + A_{i2} X_{2}$$

for i = 1.2.

Worker income, Y_{i}^{W} is defined as:

(2)

$$\mathbf{Y}^{\mathbf{W}} = \mathbf{w}_{1}\mathbf{L}_{1}\mathbf{X}_{1} + \mathbf{w}_{2}\mathbf{L}_{2}\mathbf{X}_{2}$$

where L_1 and L_2 are direct labor per unit of product and w_1 and w_2 are the wage rates for the agricultural and nonagricultural sectors respectively. Capitalist income, Y^2 is given by:

(3)
$$Y^{T} = r[P_1 P_2][K_{12}K_{22}]^{T}DX$$

where the prime denotes a vector or matrix transpose. $K_{12} = \{k_{ij}\}, (i = 1,2,...,n), (j = 1,2,...,m)$ is a matrix of agricultural capital stock coefficients describing the amount of agricultural commodities (good i) required as a stock for the production of one unit of nonagricultural goods (good j). $K_{22} = \{K_{ij}\}, (i, j = 1,2,...,m)$ is the analogous matrix for nonagricultural stocks required for nonagricultural goods. $D = \{d_i, j, (i = 1,2,...,m)\}$ is a diagonal matrix of exogenously give profit rate differentials, d_i , such that the rate of profit on the value of invested capital in the ith sector is:

Here r is the (equalized) base rate of profit.

r; = r d:

The capital stock matrix is related to the input/output matrix by turnover times, t_{ij} such that:

Subsumed class income, Y^2 , can defined as:

a i ti = Ki

(6) $Y^{2} = (P_{1} - w_{1}L_{1})X_{1}$

Demand is here assumed to depend upon the distribution of income between wages, profits and subsumed income. For the present, assume that workers do not save and there are no taxes or imported consumption. Let $\Theta_i^w = \{\Theta_{i\downarrow}^w\}$, (i = 1,2,...,n) and $\Theta_2^w = \{\Theta_{2\downarrow}^w\}$, (i = 1,2,...,m) be vectors of workers' subsistence requirement such that $h = Y' - [P_1 P_2] [\Theta_1^w] \Theta_2^w]$ can be interpreted as the moral-historical element in wages. $C_i^w = \{c_{i\downarrow}^w\}$ and $C_z^w = \{c_{2\downarrow}^w\}$ are the vectors of worker consumption for agricultural and nonagricultural goods: We then have:

(7)
$$C_i' = \Theta_i' + M_i'' h$$
 $i = 1, 2$

where $M_{1}^{\psi'} = \{m_{1i}^{\psi'}/p_{L}^{-}\}$, (i = 1,2,...,n) and $M_{2}^{\psi'} = \{m_{2i}/p_{L}^{-}\}$, (i = 1,2,...,m) are the marginal propensities to consume out of moral-historical income deflated by the relevant price.

 Θ for capitalists and subsumed classes is interpreted as autonomous consumption where consumption is a linear function of expenditure, E:

(8)

$$\mathbf{E}^{\mathsf{L}} = (1 - \mathbf{s}^{\mathsf{L}}) \mathbf{Y}^{\mathsf{L}}$$

i = capitalist, subsumed

where s⁴ is the savings propensity for capitalists and the subsumed class. We can then write:

7

(9)
$$C_{i}^{3} = \Theta_{i}^{3} + M_{i}^{3} E$$

i = 1, 2 and j = capitalist, subsumed.

(5)

The effective demand equations can now be expressed as:

$$X = XD_{i} + C_{i}^{2} + C_{i}^{2} + C_{i}^{2} + I_{i} + Z_{i}^{2} \qquad i = 1, 2.$$

where Z; is (given) exports net of competitive imports.

2.3 Marxian Closure

Given X_1 , equations (1)-(10) determine P_1 and X_2 as a function of P_2 . [6] To close the model, an equation for P_2 is required. For the Marxian closure, P_2 is determined by the Sraffian price of production equations:

$$P_{2} = P_{1} A_{12} + P_{2} A_{22} + w_{2} L_{2} + r(P_{1} K_{12} + P_{2} K_{22}) D$$

If, for simplicity, we assume that all turnover times of eq. (3) and profit rate differentials of eq. (4) are unity, the price determining equations can be written:

(11)
$$P_r = (1+r)(P_r A_{12} + P_z A_{22}) + w_r L_2$$

Eqs. (11) are m equations in n+m+2 unknowns; if the wage rate w_z is given, and the n prices P_1 are known, the model consisting of eqs. (10) and (11) still has one degree of freedom. To close the system, we must choose a numeraire. Let $Q = \{q_{i}^{\perp}\}$, (i = i, 2, ..., m) be an arbitrary normalizing vector such that:

$$P_{Q} = 1$$

Eqs. (11) can then be written:

(12) $(vP_i A_{i1} + w_i L_1)(I - vA_{i2}) - 1 Q - i = 0$

in which v = (1+r) for convenience.

Eq. (12) describes a wage-profit-terms-of-trade surface in m+2 dimensions which is the locus of possible outcomes of the struggle between fundamental classes and the associated transfers to subsumed classes. By the Perron-Frobenius theorems for nonnegative matrices, $(I-vA_{ij})^{-1}$ is strictly positive for v less than the inverse of the maximal eigenvalue of A = [7]. An increase in any element of P must then bring about a fall in either the wage rate or the profit rate in order to continue to satisfy (12). Thus, not only is the wageprofit line always downward sloping for any numeraire, but also any wage-p_i or profit-p_i line is negatively inclined as well. These relationships are depicted in Figure 1 for n = 1.

Where the economy happens to reside on its wage-profit-tot surface depends upon the effective demand equations (10). Macroeconomic consistency requires that P_1 , P_2 and X_2 must adjust until real savings, forthcoming at given savings propensities, is just sufficient to balance the given volume of real investment. As investment demand changes autonomously, the distribution of income shifts througn movement in the terms of trade and outputs until the appropriate amount of forced savings is generated. [8]

The wage-profit-tot surface of Figure 1 characterizes the environment in which fundamental classes struggle over the distribution of income and the subsequent impact of this struggle on the income of subsumed classes. Only if the prices of commodities which emoloy nonproduced means of production remain constant, will the simple Sraffian inverse relation between wages and profits obtain. Indeed, if the "cut" of the surplus taken by subsumed classes can be somehow reduced, wages and profits could rise simultaneously. On the other hand, with subsumed classes, a higher rate of exploittation need not correspond to higher rate of profit.[9] Class conflict is a complex process in this model in that the terms are modified according to the share of the surplus absorbed by subsumed classes. The latter is determined by the level and composition of effective demand over which no class exercises complete control.

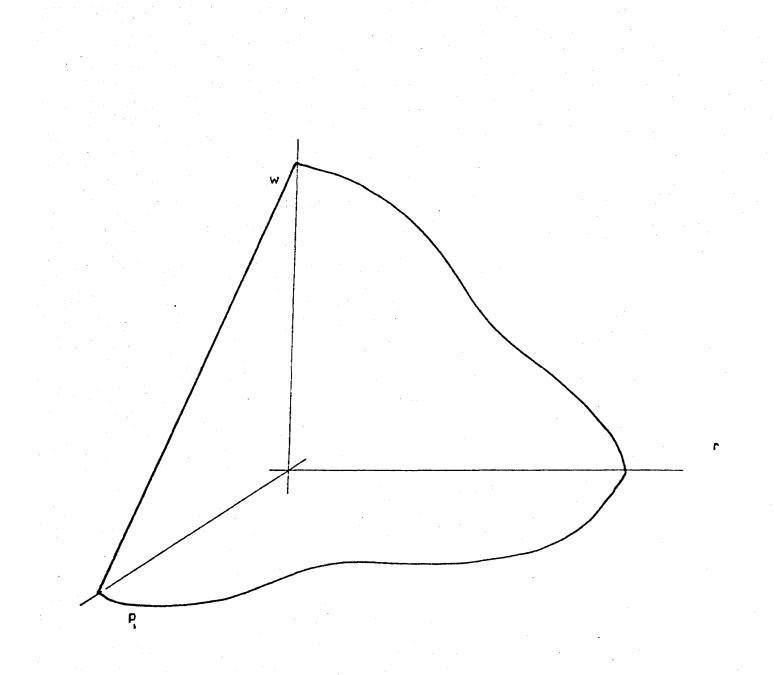


Figure 1: The Wage-Profit-Terms of Trade Surface

In the Marxian price of production system, competition between capitalists is assumed to bring about an equalization of the rate of profit on the value of invested capital (suitably adjusted to reflect permanent profit rate differentials). If this assumption is suspended, the model may be closed by specifying a Keynes-Kalecki mark-up pricing rule in place of the Sraffian system of reproduction prices. Let $R = \{r_{i}\}, (i = 1,2,...,m)$ be a diagonal matrix of <u>given mark-ups on prime costs</u>. The nonagricultural price equation for the Keynesian closure can then be expressed:

(13)
$$P_{z} = (P_{1}A_{1z} + P_{2}A_{2z} + w_{z}L_{z})(I+R)$$

where I is an m-dimensional identity matrix. Given the wage rate and the mark-ups, eqs. (13) determine nonagricultural prices, P, .

It is the portrait of class conflict which serves to distinguish the Keynesian from the Marxian variant of the model under discussion. From a comparison of eqs. (11) and (13), it is obvious that mark-up pricing allows capitalists to fully protect profits by passing along wage or agricultural commodity price increases. Movements in the profit rate are not constrained to any particular wage-profit-tot surface; indeed, no such surface is even defined under the Keynesian mark-up pricing closure. Prices of production ,on the other hand, describe an economy in which capitalists are not in full control. The bourgeoisie must not only struggle with workers but also pay off owners of nonproduced means of production along a wage-profit-tot surface.

3. Mexico

3.1 Sectors

The model estimated for Mexico is a slightly more elaborate version of the model discussed in the previous section; in this section, we consider the specification of the empirical model in more detail.

ible 1 lists the sectors and social classes employed in the model. Cutput in sectors one and two is limited r the existence of noproduced means of production while output in the remaining sectors adjusts to the level effective demand. Corn and beans is disaggregated from other agriculture in order to consider the impact a guarantee price introduced by Mexican government under the Lopez-Portillo regime. Petroleum and fertiier are the two major state-owned enterprises and profits in these sectors accrue to the state in the form general revenue. Petroleum is shown separately in order to isolate the effect of the large internal oil ice subsidy. Processed foods is broken out of industry to study the impact of various scenarios on the ice and consumption of food. Services aggregates business, personal and government services while commerce cludes wholesale and retail trade. Input-output data for these sectors was aggregated from the 45-sector exican matrix for 1975. A reference social accounting matrix is shown as Table 1 of Appendix 2.

? Classes and Incomes

The classes distinguished in this study are also shown in Table 1. Fundamental classes include "icultural workers, urban workers and urban capitalists; the remaining classes, the agrarian bourgeoisie, "rchant capitalists, and urban marginals" are considered subsumed for reasons discussed in the continuation. Consider first the case of the agrarian bourgeoisie. In Mexico, as in most countries, the agrarian urgeoisie consists of an amalgam of agricultural capitalists and landlords. To the extent that they hire and ploit labor-power, agrarian capitalists need not be distinguished from urban capitalists. Landlords, on the iter hand, are clearly subsumed in that as owners of NPMP, their incomes are determined entirely by the item of relative prices resulting from fundamental class struggle. While it is theoretically possible to parate landlords and agricultural capitalists, it is a data-intensive procedure; in what follows, we assert t the preponderance of agrarian bourgeois income derive not from extraction but from a transfer of surplus ected by their control over NPMP. [10]

Campesinos stand in the same relation to the agrarian bourgoisie as petty-commodity producers do to urban italists in that they operate processes which do not return the average rate of profit when wage costs and

	Table	ļ	
	sectors		classes
1.	corn and beans	1.	Campesinos
2.	other agriculture	2.	agricultural workers
3.	petroleum	3.	agrarian Dourgeoisie
4.	fertilizer	4.	urban workers
5.	processed foods	5.	urban capitalists
٤.	industry	δ.	merchant capitalists
7.	services	7.	urban marginals
8.	connerce		

Table 2

Terms of Trade and the Urban Profit Rate

		10	X. 6 U	1	G% a 1	GP = 1.15				
	base	Keynes	Harx	Keynes	Harx	Keynes	Marx			
urban rate										
of profit	18.20	18.40	15.93	18.15	15.75	18.21	17.95			
terms of trade	1.00	0.978	1.193	1.235	1.433	1.031	1.051			
rate of out- put growth		005	0.017	0.041	0.053	0.003	0.005			
gnp deflator	1.00	1.058	1.000	1.042	0.986	1.006	1.000			

source: Appendix 2

land rent are imputed at their average, economy-wide values. Campesinos are here assumed to neither hire labor, nor hire themselves out as agricultural workers and, thus, do not produce or extract surplus. The first part of the definition of a subsumed class is therefore satisfied. Real income accruing to this class is clearly governed by terms of trade over which campesinos have no control. Like petty-commodity producers, campesinos absorb a snare of aggregate demand that would otherwise by satisfied by the agrarian capitalists and thus it can be said that they sustain themselves by way of transfers from fundamental classes. Accordingly, campesinos qualify as a subsumed by the definition cited above.[11]

With respect to the empirical formulation, campesinos are assigned a fixed proportion of total value added in the agricultural sectors. From the remaining value added, the income of the rural proletariat is subtracted leaving the income of the agrarian bourgeoisie as a residual.

Merchant capitalists, like the agraman bourgeoisie, are a mixture of fundamental and subsumed elements. Resnick and Wolff believe merchants to be subsumed on the grounds that their most important role is to facilitate the realization of surplus value (Resnick and Wolff 1982:4). If the role of merchant capitalists were limited to providing money capital in order to speed up realization, there could be no quarrel with with his contention. On the other hand, it is quite clear that merchant capitalists perform services of storage, ransportation, information gathering, etc., and, furthermore, these services are provided by workers hired nd thus exploited by merchant capitalists.[12] Why then are merchant capitalists classified as subsumed? lerchant capitalists are here conceived as owners of NPMP, specifically their spacial location from which they rovide their services. Capitalists themselves could market their own output, but presumably at a higher cost han is incurred by merchant capitalists, owing to spacial economies. The cost differential appears as a int, that is, a deduction from the total surplus, which is appropriated by merchant capitalists.

As in the case of the agrarian bourgeoisie, merchant rents can be separated from the profits of merchant pitalists but only at the cost of substantial empirical complexity. Consequently, we allow merchant pitalists to claim a residual after commercial workers have been paid and adjustments for urban marginals e next paragraph) have been made. But unlike the the agricultural sectors, the price of commercial rvices is <u>not</u> allowed to fluctuate with demand. The output of the commerce sector is not in any meaningful nse limited by the existence of NPMP as in the case of agriculture. For this reason the price of commerce

is determined in the Keynesian closure by multiplying costs of production by the base mark-up. For the Marxian closure, however, the commercial sector is not assumed to participate in the equalization of the rate of profit due to the existence of NPMP. The price of commerce is held at unity to reflect the fact that commercial activities constitute, at least in part, a deduction from the aggregate surplus.

Urban marginals are also considered a subsumed class in that, as petty-commodity producers who absorb aggregate demand which would otherwise be satisfied by capitalists, they are analogous to campesinos but have no access to NPMP. Urban marginal incomes depend primarily upon the system of relative prices, which they regard as given, rather than strategic class conflict. Empirically, urban marginals receive a fixed proportion of total value added in food processing, industry services and commerce. The technology of the input-output matrix is assumed to represent a weighted average of capitalist and urban marginal production processes.

4. Results

In this section we examine some empirical results for both the Marxian and Keynesian closures under three different scenarios of strategic class behavior: (1) an increase in urban wages by 10%; (2) an increase in real investment by 10%; and (3) the introduction of a guarantee price for corn and beans of 1.15. For each simultation, we investigate effects upon the average rate of profit for nonagricultural sectors and the terms of trade, defined as the ratio of the agricultural to nonagricultural deflators and the rate of growth of sectors 3 through 8.0131. We shall also be concerned with changes in the distribution of income across social classes and the associated structure of private, government and foreign savings. Full Social Accounting Matrices (SAHs) for each of the simulations are shown in Appendix 2.

The numeraire for the Marxian closure is chosen such that the gross value of production is equal to the gross value of production in the base SAM. Base profit rate differentials are also maintained so that changes in the surplus are distributed in proportion to existing differentials. The net effect of this choice of numeraire and profit rate differentials is that the base SAM is the same for both Keynesian and Marxian closures. Investment is fixed in real terms for both closures. [14]

In the Marxian regime the price of oil is held constant since it is clearly regarded by the Mexican

government as a policy variable. It is, moreover, unreasonable to assume that the petroleum sector participates in the equalization of the rate of profit (even after profit rate differentials are taken into account). The price of fertilizer, on the other hand, is allowed to vary according to the closure employed. In the Marxian closure, the price of commerce is held constant to reflect the subsumed status of merchant capitalists while in the Keynesian closure, merchant capitalists are allowed to pass along cost increases in the same way as do other nonagricultural sectors. [15]

4.1 Wages, Profits and the Terms of Trade

Consider first an increase in nonagricultural wages by 10%. The first row of Table 2 shows the change in the average profit rate for the nonagricultural sectors (3-8). For the Marxian closure, the rate of profit falls by 2.27 percentage points relative to the base. Urban workers' share in income rises from 35.9 to 40% while capitalists' share falls by more than 6 percentage points. (See Table 3) In clear contrast is the Keynesian closure for which the average urban profit rate <u>rises</u> by 0.2 percentage points with an increase in urban wages. Urban workers', urban marginals' and merchants' share rises slightly at the expense of agricultural workers whose incomes are fixed nominally. Capitalists' income, on the other hand, is fully protected by mark-up pricing.

Observe that income shares reported in Table 3 refer to classes as a whole. In addition to the contraction and subsequent loss in employment, real wages per worker are lower in the Keynesian than in the Marxian closure. From the last row of Table 2, it is apparent that real wages per worker rose by only 4.2% in the Keynesian v. 10% in the Marxian closure.

The wage-induced inflation in nonagricultural sectors causes the terms of trade to turn against agriculture in the Keynesian closure even though real demand for agricultural goods increases. (See Table 4). The terms of trade turn in favor of agriculture in the Marxian closure, however, since a large redistribution

> CENTRO DE DOCUMENTACION CENTRO DE ESTUDIOS ECONOMICOS

of income from capitalists to workers and peasants drives up the relative price of "wage" v. "luxury" goods. Moreover, the existence of the numeraire prevents capitalists from transferring the burden of urban class conflict to subsumed agricultural classes. Indeed, the precipitous decline in the rate of profit in the Marxian variant is due in part to the improvement in the terms of trade as higher wages cause the economy to move in the northwest direction on the surface of Figure 1. The agrarian bourgeoisie and merchant capitalists also benefit from the improvement in the terms of trade and increased volume of retail sales respectively. The income share of subsumed urban marginals, however, depends primarily upon the terms of trade and thus rises slightly under the Keynesian and falls under the Marxian closure.

In the Keynesian closure, the rise in profits initially causes aggregate savings to exceed investment. Real savings is then reduced by a combination of the deterioration in the terms of trade, which reduces agricultural savings, and a <u>contraction</u> in nonagricultural output. In the Marxian closure, on the other hand, the fall in the profit rate is compensated by an improvement in the terms of trade as well as an expansion in output. An increase in wages apparently reduces employment in the Keynesian case (!), but by squeezing savings, causes employment to rise if capitalists cannot raise prices. Total private savings in the Keynesian closure (see Table 5) rises relative to government and foreign savings owing primarily to the contraction in output and lower imports and the decline in the share of campesinos and agricultural workers who save nothing. Government savings remains constant since the contraction in output is just balanced by the change in the tax base brought about through the redistribution of income.

What is most striking is the failure of nominal wage increases as an urban working-class strategy since the net income transfer is only among segments of the working class itself. If capitalists are able to pass along rising wages in the form of higher prices, urban class conflict is effectively displaced to agriculture. High urban wages in the Keynesian closure causes the terms of trade to deteriorate, shifting surplus from agriculture to urban sectors. Real consumption of campesinos falls with the terms of trade (see Table 4) and the agricultural bourgeoisie and improves its standard of living at the expense of agricultural workers whose

> CENTRO DE DOCUMENTACION GENTRO DE ESTUDIOS ECONOMICOS

Table 3

Income Shares

	· .	10%	W	10%	41	GP = 1.15				
class	base	Keynes	Harx	Keynes	Marx	Keynes	Narx			
urban workers	35.91	35.99	40.01	34.51	38.52	35.61	36.05			
ag workers	3.08	2.84	3.10	2.83	3.13	3.04	3.07			
capitalists	31.95	31.98	25.42	31.42	22.94	31.79	30.85			
ag bourg	4.90	4.95	6.62	6.81	8.30	5.26	5.43			
campesinos	4.04	3.97	4.82	5.02	5.80	4.35	4.43			
merchants	14.46	14.59	14.60	13.93	15.98	14.35	14.58			
urban marg	5.64	5.68	5.48	5.49	5.33	5.61	5.59			

source: Appendix 2

Table 4

Consumption in Real Terms (Mark-up Prices with 10% Increase in Nonagricultural Wages)

	Camp	Ag Wrks	Ag Bour	Urb WKrs	Urb Caps	Merch	Urb Marg) Tot Cor
1. Corn and Beans	3756	1720	265	2055	1316	640	2242	11995
2. Other Agriculture	3769	2100	2101	17699	11023	5515	5104	47309
3. Petroleum	379	169	1051	3759	3504	1397	351	10609
4. Fertilizer	0	0	0	0	0	0	Û	0
5. Food Processing	11278	7751	6713	64929	39466	20309	17690	168137
6. Industry	6491	3830	4730	49693	30487	13324	7874	116429
7. Services	7183	7611	10369	99496	75788	32702	13269	246419
8. Commerce	7946	5947	6613	64067	44011	19972	11829	160374

éę,

Ĵ,

source: Table 2 of Appendix 2

income is nominally fixed.

If capitalists cannot protect themselves through inflation, however, a strategy to increase urban wages is much more successful. A worker-peasant alliance organized around a demand for price controls would be effective in capturing a larger share of income for poorer classes. Nominal wage increases would then translate into real wage increases, turning the terms of trade in favor of agriculture and thereby sharing the gains with peasants and agricultural workers. Of course the incomes of the agricultural bourgeoisie would rise along with the terms of trade; but this surplus could be taxed and recycled as insurance against a "capital strike" by urban capital. Note that lower nonagricultural prices would reduce the real consumption of urban marginals; (see Table 4) but as output and employment expanded in urban sectors, part of this reserve army of urban marginals could be absorbed by the working class.

4.2 Investment, Profits and the Terms of Trade

We next consider whether an increase in the level of real investment by 10% might bring about similar changes in the distribution of income, savings and level of output. Augmenting the level of real investment in either closure requires that nonagricultural output must expand and/or the terms of trade must turn in favor of the agricultural sectors in order to restore macroeonomic equilibrium. Table 2 confirms that this occurs under both closures. But while in the Keynesian case increases in agricultural input prices are passed along in the form of higher urban prices, improved agricultural terms of trade lowers the urban profit rate in the Marxian closure. In terms of Figure 1, an increase in real investment moves the economy in the r-p plane toward the plaxis. A lower profit rate implies that the output of nonagricultural sectors must show a higher rate of increase and the terms of trade must move more favorably to agriculture in a Marxian v. Keynesian regime.

In the Keynesian closure, a real expansion in investment forces a redistribution of income which is similar to the first scenario of increasing nonagricultural wages. Incomes of the urban working class rise through higher employment and the rise in demand causes the terms of trade to improve. Capitalists' ability to pass along higher commodity prices implies that urban workers gain again at the expense of agricultural workers. The improvement in the terms of trade shifts income to campesinos and the agrarian bourgeoisie but urban marginals are worse off. Merchant capital also suffers, largely through changes in the structure of relative prices.

Table 3 reveals the familiar pattern of "forced savings" brought about by an increase in investment demand under the Keynesian regime. With the exception of the campesinos, the share of all low-income, low saving classes declines as income is shifted to classes capable of financing the rise in real investment. But observe that while urban workers' share deteriorates in the Keynesian closure, urban workers are actually better off under the Marxian closure in terms of share, employment and real wages per worker. The forced savings which does occur is through the effect of the terms of trade on agrarian bourgeois incomes, tax revenues and the expansion of noncompetitive imports. (see Table 5). Capitalists' share falls precipitously under the Marxian system and this is responsible for the rapid expansion in output and employment and the improvement in the terms of trade. The agricultural sector captures a large share of the total surplus in this scenario; agricultural workers' incomes rise and peasant and agrarian bourgeois improve, with respect to the Keynesian closure, due to favorable terms of trade.

Should workers be content to demand of the state that higher rates of real investment be undertaken rather than struggle for wage increases? It is obvious that if employment is the principal objective, demand stimulus will improve workers' real position more effectively than bargaining for higher wages. Moreover, rapid growth tends to redistribute income more equally between the rural and urban proletariat, especially if inflation can be controlled. Of course the agricultural bourgeoisie reaps huge benefits from the shift in the terms of trade but this surplus can either be taxed or reinvested, possibly to expand exports and reduce the evel of foreign dependence. Note that since higher levels of investment cause the rate of profit to fall and

Table 5

į

		Dis	(%)							
		10	%4W	[]]	6P = 1.15					
class	base	Keyne	s Marx	Keyne	: s Marx	Keyne	s Marx			
cap/merch	.578	.584	.508	.547	.465	.580	.571			
ag bourg	.061	.062	.084	.082	.099	.066	.068			
workers	.184	.186	.209	.173	.190	.184	.186			
total										
private	.823	.833	.800	.801	.754	.831	.826			
government	.061	.061	.079	.078	.112	.054	.057			
foreign	.115	.106	.121 -	.121	.134	.115	.117			

source: Appendix 2: (percentages may not sum to one due to rounding.)

\$

subsumed incomes to rise, one might then expect lower rates of accumulation in following periods when capitalists cannot defend themselves through inflation and/or subsumed classes controlling NPMP are prominent. Apparently, a working class strategy which relies on demand management as a mechanism to appropriate a larger share of the surplus will require substantial state participation. Not only must prices be controlled to deflect forced savings, but given the disincentive to invest in industry, the state must have the political bower to tax the agrarian bourgoisie in order to maintain the rate of accumulation.

4.3 Direct State Intervention

The lesson of the previous two scenarios is that an expansion in aggregate demand will improve terms of trade and reduce urban unemployment. An increase in the foreign deficit, however, appears to unavoidable. Foreign borrowing can be politically costly and in a country with more that a third of its labor force in igriculture, a secular increase in food imports is difficult to justify. Under the Lopez-Portillo regime, a comprehensive system of agricultural price supports, credit, fertilizer and other input subsidies was ntroduced by the <u>Sistema Alimentario Mexicano</u>. The objectives of these policies were to first raise yields for corn and beans on peasant plots, reduce food imports and to improve the rural distribution of income.

This strategy undertaken on behalf of subsumed peasant producers is similar in effect to stimulating geregate demand through an expansion in investment. The scenario is expansionary in both closures, but gain, the rate of profit moves in opposite directions for the Keynesian vs. Marxian variants. Note that as n the case of a change in the level of investment, urban workers' share falls under the Keynesian and rises with the Marxian closure. In both cases, the guarantee price improves the terms of trade and is expansionary ut the impact is greater if inflation can be contained. As a class strategy, the guarantee price is uccessful in redistributing income toward the peasantry; but as in the first scenario, the Keynesian closure nsures that the transfer will be between segments of the working class inasmuch as capitalists are able to iaintain their share. Real wages per worker fall for both urban and agricultural workers while worker incomes is the Marxian system remain intact.

As purchasing power is shifted from the government directly to the agrarian bourgeoisie and campesinos, government savings predictably falls for both closures. (See Table 5) Private savings rise while foreign savings remains approximately constant. This contrasts with the other two scenarios in which government savings rises under both closures. As in all scenarios, the Marxian closure gives rise to higher foreign savings due to its more expansionary character.

5. Conclusions

The model presented in this paper is nonneoclassical in the sense that class conflict rather than marginal productivities, factor endowments, or what have you, determines the distribution of income. In both closures the levels of investment and money wages are taken as historically given data rather than ittempting to (falsely) attribute their determination to parameters of an essentially static model. The (eynes-Kalecki variant tends to limit the scope of class conflict to a struggle between fundamental and subsumed classes, while the Marxian formulation allows a more complex redistribution of income to follow parametric changes in the model. As we have seen, there are substantial differences the qualitative inoperties of the model depending upon which approach is adopted.

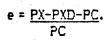
The difference in properties of the two closures hinges on the ability of capitalists to pass along cost ncreases initiated by workers or a change in the terms of trade caused by an expansion in effective demand or agriculture. In the Keynesian closure, price movements cause workers to release more surplus than under he Marxian system. The adjustment in output and the terms of trade needed to recoup total savings is herefore less violent under mark-up pricing than in the Marxian closure. The choice of closure is obviously ot arbitrary; it must reflect the historical reality of the economy for which the model is constructed. On he other hand, there are some clear policy implications which may be drawn from the comparison of the two losures. If the ability of capitalists to protect their incomes through inflation can be restrained, the overnment can reduce unemployment by stimulating aggregate demand, either directly or through subsidy rograms and price supports. Increasing wages would then expand employment and improve the terms of trade for griculture. If price controls are politically infeasible, however, there is much less scope for progressive

overnment intervention. Industrial wage increases will be accompanied by a reduction in employment in industry, terms-of-trade induced stagnation in agriculture and inflation. Stimulating effective demand will educe unemployment and improve terms of trade but at the cost of inflation, eventual devaluation and possible biss of political autonomy. . The literature on computable general equilibrium models is burgeoning; See Taylor (1980), Dervis et al. 1982), Taylor et al. (1980), Adelman and Robinson (1977), Taylor and Lysy (1979) and Waelbrock (1982). For analytical approaches to Marxian economic theory see Roemer (1981), Roemer (1982), Morishima (1973) and Brody (1960). See also Taylor (1982).

The word "closure" may be somewhat misleading given its prevalence in recent literature. Sen (1963) isefully distinguishes. Keynesian, Neoclassical, Cambridge and Johansen "closures" for a simple system of lational income accounting identities. Generically, "closure" refers to the equality of independent equations ind unknowns and it is this more prosaic usage we employ here.

I. By "surplus," we mean a heterogeneous vector of commodities; "surplus-value" is then the inner product of iome vector of exchange ratios with the vector of surpluses while "surplus labor" is the product of the labor officients with the vector of surpluses. The use of the term "surplus-value" therefore does not imply that t is necessarily denominated in terms of <u>embodied labor times</u>. See Steedman (1977) for evidence that none of . farx's crucial insights depends upon the labor theory of value.

. See Gibson and McLeod (1981), Gibson and McLeod (1982), Gibson and Esfahani (1981), Montani (1975) and Jurz (1978) for details of the theory of nonproduced means of production.


. See Pasinetti (1977), Chapter 5.

• One could also conceive of a system of supply response equations to determine X, but no attempt to extend he model in this direction is made here.

. See Pasinetti (1977), appendix.

. Note that the level of real wages in terms of the numeraire is held constant for a given money wages. But s investment increases, the terms of trade turn in favor of agricultural sectors which causes the real wage n terms of these commodities to <u>fall</u>.

• More formally, let $P = [P_1, P_2]$; $X = [X_1, X_2]'$; $C = [C, C_2]$ and $XD = [XD_1, XD_2]$. The price-denominated ate of exploitation, e, can then be written as:

10. See McLeod (1983), for an empirical attempt to separate rent and profit in a Sraffian model.
11. In addition to their role as petty-commodity producers, campesinos also own nonproduced means of production the return on which may be positive, negative or zero when computed at the going profit and wage rate. If the rental value is greater than or equal to the rent obtained by owners of land of comparable quality, it is no longer possible to refer to this class as campesinos, in that they are indistinguishable from the agrarian bourgeoisie. Land ownership, of course, compounds rather contradicts campesinos' subsumed status.

12. As purely financial intermediaries, merchant capitalists take a cut of the surplus in the form of interest rather than profits. There will be no independent role for the rate of interest in the model considered below.

13. The 1975 SAM is used as the base to compute all deflators. All data discussed in this section is drawn from the eight social accounting matrices shown in Appendix 2. For the full specification of the model and data sources employed see Appendix 1.

14. Fixing investment in nominal terms is more contractionary in the Keynesian closure but the effect on the Marxian closure depends upon the numeraire and changes in the structure of relative prices.

15. With the exception of fixing the price of oil at unity, the assumptions discussed in this paragraph do not affect the qualitative nature of the results discussed below.

. مراجع مراجع

References

B.

Adelman, I. and S. Robinson, 1977, Income Distribution Policies in Developing Countries: A Case Study of Korea. Stanford: Stanford University Press.

Bowles, S. and H. Gintis, 1982, "On the Class-Exploitation-Domination Reduction," Politics and Society.

Jervis, K., J. de Melo and S. Robinson, 1982, <u>Planning Models and Development Policy</u>. London: Cambridge Jniversity Press.

Brody, A., 1960, Proportions, Prices and Planning, Amsterdam: North-Holland.

Chichilnisky, G. and L. Taylor, 1980, "Agriculture and the Rest of the Economy: Macro Connections and Policy Restraints," <u>American Journal of Agricultural Economics</u> 62, 303-309.

Ister, J., 1982, "Marxism, Functionalism and Game Theory: A Plea for Methodological Individualism."

Iohansen, L., 1960, <u>A Multi-Sectoral Study of Economic Growth</u>, Amsterdam: North-Holland.

ibson, B. and D. McLeod, 1981, "Non-produced Means of Production in Sraffa's System: Basics, Nonbasics, and luasibasics," <u>Cambridge Journal of Economics</u> (forthcoming).

ibson, B. and H. Esfahani, 1982, "Nonproduced Means of Production: Fundamentalists v. Snaffians," <u>Review of</u> <u>adical Political Economics</u> (forthcoming).

ibson, B., N. Lustig and L. Taylor, 1982, "Impactors distributivos de las políticas del Sistema Alimentario lexicano en un marco de equilibrio general." Mexico, D.F.: Subdirección de Investigación Economica del Banco e Mexico, S.A.

urz, H., 1978, "Rent Theory in a Multisectoral Model," Oxford Economic Papers 30.

ustig, N., 1982, "Politicas de precios y subsidios del Sistema Alimentario Mexicano y distribución del Igreso," Mexico, D.F.: SINE/SAM, Segundo Reporte.

cLeod, D., 1983, "Price Policy, Profits and Land Rents in Flex-Fix Price Model of the U.S. Economy," Ph.D. Isseration, Depeartment of Agricultural and Resource Economics, University of California, Berkeley.

orishima, M., 1973, <u>Marx's Economics: A Dual Theory of Value and Growth.</u> London: Cambridge University ress.

ontani, G., 1975, "Scarce Natural Resources and Income Distribution," <u>Metroeconomica</u> 27, 68-101.

isinetti, L., 1977, Lectures on the Theory of Production. New York: Columbia University Press.

>snick S. and R. Wolff, 1982, "Classes in Marxian Theory," The Review of Radical Political Economics 13:4,1-.

Jemer, J., 1982, <u>A General Theory of Exploitation and Class.</u> Cambridge Mass: Harvard University Press.

_____, 1981, Analytical Foundations of Marxian Economic Theory., London: Cambridge University Press.

cretaria de Programacion y Presupuesto, 1981a, <u>Sistema de Cuentas Nacionales</u>, Vols. 1,7. Mexico, D.F.: ordinacion General del Sistema Nacional de Informacion.

> 23 CENTRO DE DOCUMENTACION 23 CENTRO DE ESTUDIOS ECONOMICOL

<u>e los Hogares: 1977</u> Mexico, D.F.: Coordinacion General del Sistema Nacional de Informacion.

en, A., 1963, "Neo-Classical and Neo-Keynesian Theories of Distribution," Economic Record 39, 53-64.

raffa, P., 1960, Production of Commodities by Means of Commodities. London: Cambridge University Press.

teedman, I., 1977, Marx After Sraffa. London: New Left Books.

aylor, L., 1980, Macromodels for Developing Countries. New York: McGraw-Hill.

_____, 1983, Structuralist Macroeconomics New York: Basic Books (forthcoming).

aylor, L., et al. ,1980, Models of Growth and Distribution for Brazil. London: Oxford University Press.

aylor, L. and F. Lysy, 1979, "Vanishing Income Redistributions: Keynesian Clues about Model Surprises in the fort Run," Journal of Development Economics 6, 11-29.

1.1 Model Specification

<u>Variables</u>

Ρ	price
x	output
r	profit rate/mark-up
p'	retail price
E	expenditure
Υ	income
с	consumption
s,	government savings
S,	foreign savings
S.	government savings

<u>Parameters</u>

t	direct tax rate
a	input/output coef.
W	domestic wage
1	labor coefficient
I	investment
ds	change in stocks
9	government expenditure

Parameters

z	exports
m	competitive imports
8	subsistence consumption
М	manginal prop. to consume
p*	guarantee price
<u>e</u> .	savings propensity
u	proportion of value added
	accruing to campesinos
÷y ⊢	proportion of value added
	accruing to urban marginals
p*	international price for exports
q	direct tax rate
Ь	commercialization margins
e	exchange rate
wg	government wages
m,	consumption imports (non comp)
m ₁	investment imports (non comp)
وiTt	goverment imports (non comp)
ĸ	capital stock coefficients .
	(including profit rate
	differentials)

Equations

Marxian

$\mathbf{p} = (1 + \mathbf{t}_j) \left(\sum_{i=1}^{g} \mathbf{p}_i \mathbf{a}_i + \mathbf{w}_j \mathbf{l}_j + \mathbf{r} \sum_{i=1}^{g} \mathbf{p}_i \mathbf{k}_i \right)$	j=4,5,,8
Keynesian	
$p_{j} = (1+t_{j})(1+r_{j})(\sum_{ij}^{g} p_{i} a_{ij} + w_{j} b_{j})$	j=3,4,,8
$x_{i} = \sum_{j=1}^{8} a_{ij} x_{j} + c_{i} + I_{i} + ds_{i} + q_{i} + z_{i} -$	m _i i=1,2,,8
$\mathbf{c_i} = \sum_{j=1}^{T} \left[\Theta_{ij} + M_{ij} / \mathbf{p}_i^{\prime} (\mathbf{E}_j - \sum_{i=1}^{T} \mathbf{p}_i^{\prime} \Theta_{ij} \right] $	i=1,2,,7
$E_i = (1-s_i)(1-q_i)Y_i$	i=1,2,,7
$Y_{i} = \sum_{j=1}^{2} (p_{j} - \sum_{i=1}^{9} p_{i} a_{ij}) x_{j} u_{j}$	
(p* = p; guarantee price not in ef	fect)
$Y_2 = \sum_{i=1}^{2} \omega_i l_i \times_i$	
$Y_{3} = \sum_{j=1}^{2} [(1-u_{j})(p_{j} - \sum_{i=1}^{4} p_{i} - a_{ij}) - w_{j} l_{j}] x_{j}$	j · · · ·
3	

 $Y_{4} = \sum_{ij}^{3} w_{i} I_{i} \quad x_{i} (1 - v_{i})$

Marxian

$$Y_{5} = \sum_{j=5}^{7} r\left(\sum_{j=1}^{9} p_{j} k_{ij}\right) x_{j} \left(1 - v_{j}\right)$$

Keynesian

$$Y_{5} = \sum_{j=5}^{7} r_{j} \left(\sum_{i=1}^{9} p_{i} a_{ij} + \omega_{j} l_{j} \right) x_{j} \left(1 - v_{j} \right)$$

Marxian

$$Y_6 = (1 - \sum_{i=1}^{9} p_i a_{i-1} - w_6 l_8) x_8 (1 - v_8)$$

Keynesian

$$Y_{g} = r \left(\sum_{i=1}^{9} p_{i} a_{ig}^{*} + w_{g}^{*} l_{g}^{*}\right) \times_{g}^{*} (1 - v_{g}^{*})$$

$$Y_{I} = \sum_{i=1}^{8} \left[v_{i} / (1 - v_{i}^{*}) \right] Y_{i}^{*}$$

$$p_{i}^{*} = p_{i}^{*} + p_{g}^{*} b_{i}^{*}$$

$$i = 1, 2, ..., 7$$

$$i = 1, 2, ..., 7$$

$$i = 1, 2, ..., 7$$

Marxian

$$s_{4} = \sum_{j=3}^{8} t_{j} \left(\sum_{i=1}^{9} p_{i} a_{i} + w_{j} b_{j} + n \sum_{i=1}^{9} p_{i} k_{i} \right) x_{j} + n \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{j} + n \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}^{9} p_{i} a_{i}) x_{i} + \sum_{i=1}^{9} p_{i} k_{i} x_{i} + (1 - \sum_{i=1}$$

Keynesian -

$$s_{g} = \sum_{j=0}^{g} t_{j} (1+r_{j}) (\sum_{i=1}^{g} p_{i} a_{ij} + w_{j} l_{j}) x_{j} + \sum_{j=0}^{q} r_{j} (\sum_{i=1}^{g} p_{i} a_{ij} + w_{j} l_{j}) x_{j} + \sum_{i=1}^{7} q_{i} p_{i} a_{ij} + w_{j} l_{j}) x_{j} + \sum_{i=1}^{7} q_{i} Y_{i} - \sum_{i=1}^{g} (p_{i} - ep_{i}^{2}) z_{i} + (p \times -p_{i}) x_{i} + \sum_{i=1}^{g} q_{i} + w_{j} + m_{j}]$$

$$s_{g} = \sum_{i=1}^{g} p_{j} a_{gi} x_{i} + m_{i} + m_{j} + m_{j} - \sum_{i=1}^{g} p_{i}^{2} z_{i}$$

1.2 Data Sources:

The input/output matrix is an agregation of 72-sector matrix for 1975 in Secretaria de Progamacion y Presupuesto, 1981a. The disaggregation of agriculture into corn and beans and other agriculture is taken from the CHAC model and was compiled by Maria Bassoco of the Division of Macroeconomic Analysis of the Systema Alimentario Mexicano. Dr. Horacio Santamaria of the Coordinacion del Sistema Nacional de Información (SPP) assisted in the disaggregation. The consumption functions were estimated using an extended linear expenditure system using data from a 1977 budget survey conducted by Secretaria de Programacion y Presupuesto, 1981b. The authors had access to the orginal computer tapes of this study from which the class structure was determined. Direct tax rates were taken from Reyes-Heroles, 1980 as were the proportions of value added accruing to urban marginals. Capital stock coefficients were taken from Banco de Mexico 1978. A detailed description of sources and methods can be found in Lustig, 1982.

ML+1()	CORM	OTHER AG	PETRO	FERT	1000	INCUSTRIE S	ERVICES (OPPIERCE	TOTAL	CAM	PESIND AI	S UPPS , A	6 80UR (168 W+PS (IRB CAPS	MERCH	JRB MARG 1	101 COH	60/1	EXPOPTS	114.155	trejen	TOT INV	101 FHD	TOTAL
1. (0## ##0 EE##S .	\$67	1740		¢	5555	6	0		7582 7582		3762	1731	262	2054	1316	641	2217	11983	0	,	U	3123		15113	23075
2. OTHER AGRICULTURE 3. PETROLEUN	0 71	11:59 2656	2 21424	6 817	70431 3129	7658 13494	533 10073	0 13144	54788		406	2290 240	2042	17595 3754	10974 3506	5430	5042	471.10 108¥4	140 1719	3192 5785	2068	5310 570		50501 19766	143270 73554
4, 8167111266	\$50	3138	9	24	0	109	7	0	4228		0	0	0	0	0	0	0	0	14	399	1	225		623	1.54
1. FLGD FROCESSING	0	11363	,	6	32433	2734	632	0	47431		11472	8554	100	64715	39354	20131	- 17531	169456	177	7379	169	2633		126342	226279
8. BID-STRY		6657	3437	10.11	13131	171011	20214 54294	5462 21820	229158 128257		6659 7352	4231 8050	4692 10371	49/57	30638 76272	13196 32693	7822 13250	116993	5122	1/359	173042	9837		3223.5	551530
2. SEPTICES B. Contrefice	542 462	1595 5701	4628 1032	257 339	9120 10378	33740 42473	11245	1973	728257		8097	6436	6583	64122	44160	19877	13250	247867	44390 971	210a 2555	5013 325/3	0	5013 30573	319300 195245	447623 268967
1014;	2822	44040	30510	2520	144175	271418	107275	32459	635254		41539	31593	31674	301891	206220	93343	57958	764217	72522	39790	211034	21674	223329	1102249	1744102
WALLE ADDED BY CLASS																									
L. LANFESINCS	14056	27147							41204																41294
2. 41. 495+555	4280	27057							31338																31338
3. AG PURPOEDISIE	1561	49427					134971		49799 375448										40264						47739
4. UAB WCREEPS 5. HEB (AF1'ALISTS			136?8	445	19034 40910	113493 110498	174952	43644	325440										40264						355130 325430
A. MERCIWAT CAPITAL								147317	147317																14/317
7. UFRAN MARSHALS					4832	14162	21503	19633	57470																57490
PRIVATE WALPP AUCED	10808	102632	31 381	1541	64776	238153	330525	207954	978253										40254						1019528
51151ES	55	287	2760	18	347	5356	7649	5312	21845																. *
DIFORT SUBSIDY	. 0.	8	. 0	¢	0	0	. 0	6	0																
GUARANGEE PRICE SUB INCLEECT TAX	0 158	016	10448	23	10327	15/31	13147	33765	84608																
SU ERIPERT PROFITS			17703	896				••••	19572																
NET TAX	102	522	25591	840	4090	103/5	5478	28453	81395		O	ê	2784	18878	18125	8204	0	47939							125301
Huibil	237	1895	3775	860	7349	31584	4324		49223		335	-255	-407	-2975	-2647	-1198	-468	-8284	534	14240	2'286		2728e		85020
S#01055											0		15937	47988	103762	46967	0	214655	15979	24500					201615
TOTAL	23095	148290	73554	4866	226279	551530	447623	268847	1744102		41204	31338	49989	365730	325460	147317	57495	1018528	129301	85020			200013		
TWINE .																• • • • • •	u, 170	1010220					100013		

TAELE 1: BASE SOCIAL ACCOUNTING MATRIX MILLIONS OF 1975 PESOS

Appendia 2

REAL DUTPUT

PPICES

4

23095 148290 23554

1

1

1

1

4866 226279 551530 447623 268867

1

1

						-				 														
. CURI AID BEAIS	720	1700	0		5985		•		8605	4054	1857	286	2218	1420	691	2420	12947	0	,	. 8	3371	3371	16325	
. OTHER AGRICULTURE		11837	2	6	74581	8108	563	0 3393	95098 59148	3998	2227 183	2228 1138	18774 4070	11692	5850	5414	50184	149	3192	2852	5633	8495	62010	
I. FETPOLEUN I. FERTILIZER	77 1016	2825 3357	23096	885 25	3380	14580 116	10860 A	3373	4523	410	103	1138	4070	3/*3	1512	380	11485	1859	5795	. 0	617	<i>417</i>	19746	
S. FOOD PROCESSING	1010	12176	8	;	34694	2924	948	6	50756	12085	8304	7194	69577	42291	21763	18957	180172	190	399 7379	210	240 2218	242 3028	655	
I. INCUSTRE		7225	3212	1160	14205	184969	30447	5901	247801	7034	4151	5124	53852	33039	14440	8533	1261.14	5550	1?359	157548	10660	198208	347291	59509
. SEPVICES	593	1745	5048	282	9962	37066	61345	23868	139909	7850	8328	11346	108878	82929	35783	14519	269637	70446	2106	5485	10000	5485	347674	
L. LOTTERCE	507	6252	1128	372	11360	46483	12301	2157	80558	8713	4521	7251	20251	48249	21899	12970	175855	1045	2555	33634	ō	33634	213108	
IOTAL	30.65	47368	32994	2736	154168	294246	116474	35319	686397	44153	31573	34570	327612	223414	101938	63194	826454	79274	38780	229730	20339	253039	1197578	188397
ALUE ADDED BY CLASS	•				•																			
L. CAMPESINOS	15182	28643							43824															4382
AG UPPREAS	4281	27057							31338	$ f_{1,1} = f_{1} $														313
I. AG POUFGEOISIE	2029	52585							54613															5461
C. CRB WORKERS			14998	710	20901	124603	147856	47861	356929									40264						39715
5. UPB CAPITALISTS					43762	117518	189665		352946															35274
. HEPCHANT COPITAL							33484	141040 18590	141040 62723				•											10104
7. URBAN HARGHALS					5213	15435	23486	18374	02/23															6272
PRIVATE VALUE ADDED	21491	108285	34101	1468	69876	259555	361008	227490	1063413			•				~		40264						11035
SPESIDIES	40	305	2978	83	372	5793	8335	5807	23733															
DX+ORT SUBSIDE	1	194	477	28	528	1453	178	247	3126															
GUNEWATER PRICE SUR	0			•					8															
INDIFECT TAX	170	859	11470	24	11047	17015	14326	36910	#1842															
GOVER HEAT PROFITS			19103	758					20061															
NET TAX	109	340	27137	871	10147	9769	5793	30857	85044	. 0	0	3941	20446	19454	8948	: D	52112							13715
INFORTS	237	1895	3762	840	7335	31523	4397	8	49120	- 329	-235	-418	-2981	-2649	-1209	-471	-8284	526	14240	27286		27284		8491
				••••				•					•				4444		19194	4/400				
SAV INGS	•									0	8	17412	52117	112525	51342	0	233396	17081	25877					280 35
TOTAL	24930	157108	78892	5177	241525	595092	487582		1883973	43824	31 338	54613	397193	352946	161040		1103677	137155	84916			280356		

CAMPESING AG WRKS AG BOUR URB LKRS URB CAPS MERCH URB MARG TOT CON GOUT

EXPORTS INJEST INJER TOT IN TOT FOD TOTAL

TABLE 2: MARK UP PRICES WITH AN INCREASE IN NOVAGRICULTURAL MAGES OF 102

CORI OTHER AS PETRO

FERT FOOD INDUSTRY SERVICES COMERCE 101AL

23097 148289 73318 4865 225995 550471 445779 268039

1.07938 1.04078 1.08253 1.04981 1.07158 1.0837 1.09472 1.09653

NEXILO

REAL DUTPUT PRICES TABLE 3: PRICES OF PRODUCTION WITH A 10% INCREASE IN WAGES

Exito	COPH	OTHER AG	PETRO	FERT	F000	INDUSTRY S	ERVICES C	OFFICE	TOTAL	1	CAMPESINO AI	i vrks - Al	G BOUR L	JRB WKRS U	RB CAPS	MERCH U	R9 MARG T	OT CON	60VT	EXPORTS	INVEST	HAVEN	TOT INV	tot fnu	TOTAL
. CORI 410 BEANS	737	1945	,	,	4197	,)		8880		4177	1908	398	2289	1593	713	2178	13188		,		3452	3452	16647	2552
. OTHER AGRICULTURE	0	12957	3	7	82543	9030	633	0	105172		4660	2477	3135	20952	11317	5894	5417	53853	163	3192	3122	6165	9288	65496	171662
. PETROLEUM	71	2656	21665	812	3157	13702	10312	3206	55588		667	263	1071	4559	2555	1389	288	10792	1718	5785	0	570	520	19854	7445
. FERTILIZER	†12	3015	0	23	0	104	7	0	4064		0	0	ŧ	0	0	. 0	0	0	13	399	1	216	. 217	629	469
. FOOD FROCESSING	1	11565		. 6	33317	2825	926	8	48647		13820	8702	8184	72055	32897	20417	17162	173237	180	7379	. 199	2677	2876	183672	
INDUST#1	159	6390	3334	1026	12701	166419	27691	5337	223044		2998	4151	7262	580 39	18820	13278	7315	116848	4908	17359	145853	9427	175280	314394	53744
SERVICES	501	1476	4334	238	8516	31893	53316	20240	120705		8240	7610	13320	103930	60213	31411	12168	236892	59560	2106	4632	0	4637	303194	42409
. COMERCE	462	5701	1044	339	10475	43129	11532	2012	74694		9405	4483	9079	72549	35757	20380	11413	165266	971	2555	30673	0	30673	199465	27415
014	2843	45705	30387	2457	156907	267093	184408	31196	640995		47181	31594	42450	334372	163062	93475	55941	770076	67513	38780	204486	22507	226993	1103345	174435
LEE ACCED BY LLASS																									
CAMPESINOS	15278	33004							48782																487
AU WORNERS	4280	27057							31338																31
AG BOOFGEDISIE	2277	64713							66990																469
URB WORVERS	•••		15230	710	21133	126778	151994	48954	364792										49264						4050
. UPB CAFITALISTS				•••	32426	87160	137243	10101	257329																2573
. HEFEH WIT CAPITAL					•••••			147513	147513		· ·			•											1475
. URBANI MUFGINALS		· · ·			4317	13526	29141	17483	55487											.0					5548
REINTE VALUE ADDED	22335	124775	32260	1412	57876	227456	309898	213950	\$72231			•	•						40264						10124
	•••••				•••••											1									
SUBSIDIES	62	334	2794	75	357	5212	7244	5416	21494																
EXPORT SUSSIDY	1	514		-16	131	-723	-158		-250																
GUARANTEE PRICE SUB																						•			
PROIPECT TAK	175	. 140	10778	22	10409	15309	12451	34429	84713									4							
GOVERNMENT PROFITS			17038	702					17732																,
T TAX	111	*2	25014	465	10121	10820	5345	29013	81202			٠	- 3731	20850	14331	8215	•	47127							1283
IF DRIS	237	1875	3821	861	7416	32871	4477	•	49929		- 399	-254	-548	-3314	-2105	-1207	-454	-8284	536	14260	27285		27286		85
WINGST										•		·	21358	53148	82041	47030		203577	20014	30486					254
ITAL	25527	171667	74453	4/07	232320	537439	424099	274159	1744764		48783				367344	147614	85407	1013484	110110	08778			254279		
UINL	43527	1/100/	/4433	4072	636360	33/437	424977	2/5137	1/441399		48782	31338	46990	405056	257329	147513	55487	1012496	128329	85725			2342/9		

REAL DUTPUT PRICES 23095 148289 74453 4867 228393 560048 458255 274159 1.10535 1.16112 1 .96079 1.01777 .95834 .92512 1

										 			·····			 								
1. COM HID BEAKS	526	2443	I	•	7681	8	0	0	11047	5258	2372	467	2809	1840	906	2552	16225	0	,	٥	4768	4768	21000	32049
2. OTHER AGRICULTURE 3. PETROLEUM	0 21	13902 2661	3 22427	7 824	87420 3122	10270	670 10488	3295	112292 57441	5167 832	2444 209	3400 1082	20824 3856	13200 3710	6201 1434	5900 363	57336 11486	175	3192 5785	3685	7277 620	10962 628	71664	183956
4. FERFILIZER	953	3150	0	24	3122	11352	10408	3475	4253	0	10,	1002	30.00	3/10	14,34	103	11406	1/21	3783	. 1	629 248	628 249	662	4914
S. FOOD FROCESSING	0	12941	,	2	36858	3354	1054	0	54245	14075	8669	9365	71346	43832	22123	19332	190743	202	7379	246	3300	3545	201870	25:11
4. INDUSTRY	169	6732	3629	1089	13210	185866	29607	5768	246057	9117	4034	8412	51077	33165	13714	8008	127531	5171	17359	192219	10926	203145	353205	599272
7. SERVICES	544	1400	4854	260	9112	36636	58671	22948	134625	9425	7838	15233	101251	79132	33352	13462	259694	64563	2106	5530	8	5530	33:872	460517
8. LUMERCE	463	5710	1081	342	10355	45789	11725	2067	77531	10109	6006	9612	64124	45369	19941	11409	166770	973	2555	33793	Ô	33793	204091	281621
TOTAL	3124	49159	32003	2551	167758	296588	112243	34077	892502	55984	31572	47776	315288	220268	97672	61225	829784	72819	38780	235423	27146	262619	1204003	1901505
VALUE ADDED BY CLASS																	· · ·							
1. CAMPESINOS	20168	35401							55569															5554
2. AG WURKERS	4280	27057							31 338															31239
3. AG BOUFCEDISIE	4101	71378							75479														•	75479
4. UFB WURKERS			14306	649	18964	122165	140271	45645	342000									40.284						382244
5. UFB CAPITALISTS					46492	120098	181401		347991 154307															347691
6. MERCHWIT CAPITAL 7. UPBAN MARGINALS					5276	15317	22383	154307 17793																15436) #0776
A TOURSES SAMPLEMED																								••••
PRIVATE VALUE ADDED	28549	133836	32855	1554	70732	257580	344055	217745	1067453									40264						1107713
SUBSIDIES	78	358	2892	79	395	5921	7972	5584	23158															
DEFORT SUBSIDI	3	785	11	2	1038	169	6	4	2014															
GUASAVITEE PRICE SUB	0			•					0															
INDIFECT TAA	219	1007	11157	23	11736	17098	13702	35367	90311 19454															
GOLERIMENT PROFITS	136	-134	18549 26804	705 847	10303	11108	5724	29799	84591	8		4204	19677	19380	8594		51854							13644
NCI INA	1 10	-134	20004	947	10303	11100	3/ 44	•••••		•	•	1.01		1,200	0374	•	11074							13044
IMPORTS	23?	1095	3948	866	7321	33997	4494	. 0	51958	-416	-234	564	- 2859	- 2603	-1154	-454	- 8284	536	16260	2*236		27286		8775
SAVINGS										Ċ.	0	24064	,50158	110946	49196	0	234363	22826	32715					28990
TOTAL	32049	183954	77048	4914	256114	599272	466517	281421	1701503	55569	31 3 38	75479	392264	347991	154302	40770	1107717	136445	87754			289904		

CAMPESIND AG WRKS AG BOUR URB WKRS URB CAFS MERCH URB MARG TOT CON GOUT

EXPORTS INVEST INVEH TOT INV. TOT FHD TOTAL

TABLE 4: MARK-UP PRICES WITH A 102 INCREASE IN REAL IMPESTMENT

CURI OTHER AG PETRO

FERT

NEXICO

23095 148289 76927 4897 225444 593670 465201 281190 REAL DUTPUT PRICES

1.38783 1.24582 1.00187 1.00386 1.14065 1.00972 1.00284 1.00155

FOOD INDUSTRY SERVICES CONNERCE TOTAL

TABLE 5 PRICES OF PRODUCTION WITH A UPC INCREASE IN REAL INVESTMENT

MEXILO	(0 1 94	OTHER AS	PETRO	FERT	1000	INDUSTRY S	ERVICES (OMERCE	TOTAL	CAMPESINO	AG VIRKS	ig bour i	JRB WKRS U	RB CAPS	MERCH (RB NARG 1	OT CON	60/1	EXPORTS	INVEST	INVEN	101 INV	TOT PHO	TOTAL
1. CORI AND REAVS 2. DTHER AGRICULTURE 3. PETROLEUM 4. FERTILIZER 5. FOGO FROCESSING 4. INCUSTRF 7. SERVICES 8. COMPERCE	907 8 71 864 9 147 449 462	2456 2854 11758 5906 1322	8 3153 3971 1868	8 7 822 22 6 954 215 341	2595 92244 3144 0 33734 11492 7595 10431	0 10781 14576 107 3055 143649 30376 45980	8 733 10636 7 771 26398 49247 11894	6 9 3322 0 5113 19154 2085	10894 118332 57394 3853 49532 216999 112330 77843	5198 5567 978 0 14613 9445 9175 11572	2333 2435 245 0 8785 3989 7018 4573	538 4189 1091 0 9642 9598 15784 11817	2771 22227 4266 0 70374 53259 93555 71760	1882 12074 2185 8 30570 14421 51245 33081	881 4695 1625 0 22008 15223 31894 23020	2240 5725 237 8 16797 6696 10913 11152	15836 59116 10647 8 174790 112631 219605 168974	0 183 1718 12 183 4537 53341 971	2 3192 5785 399 7379 17359 2106 2555	9 3855 0 1 223 168640 4568 33741	4673 2612 627 225 2974 9595 0 0	4673 11467 627 226 3216 178225 4568 33741	20514 73957 19776 437 1855:9 312752 279620 206241	31411 192290 76170 4490 235101 529751 351750 284103
TOTAL	2900	47134	30368	2368	166457	248419	99878	29676	647199	58540	31598	52459	318214	145480	101346	53741	761598	60746	38780	211028	25715	236743	109236?	1745266
WALUE HODED BY CLASS																•								
1. CANPESINOS 2. AG LIORKEPS 3. AG POURGEDISIE 4. URB UGPKEPS 5. UPB CAPITALISTS 6. MERCHWIT CAPITAL 7. URBAT MARGINALS	19877 4281 3980	27858	14165	650	1*133 28187 3815	122597 79905 12893	142511 121455 18368	44118 159910 18334	58057 31338 83089 345173 229548 159910 53320									40264				· ·		58059 31338 33089 385436 229548 159910 53320
PRIMATE VALUE ADCED	28138	144348	33725	1270	51134	215306	282334	224362	940437	•								40264						1,000701
SUBSIDIES DEFORT SUBSIDE GIMPARTEE PRICE SUB INDIFECT TAX SUBJECT TAX	74 2 0 215	768	2858 8 11827 19560	71 -36 21 620	36) 256 10741	5125 ~1981 15054	6691 -361 11501	5613 8 35678	21171 -1152 8 85292 20180															
NET TAA	134	-287	27728	606	10124	11909	5171	30065	85452		1	4627	17841	12784	8906	. 0	46157							131601
IMPORTS	237	1895	3909	866	7386	34117	4566	• •	52176	-48)	-259	-488	-3191	-1900	-1324	-44}	-8284	534	14260	27286		27286		\$7973
SAUTRICS			,			•					•	26490	50574	73184	50982		201230	29864	32933					264028
TOTAL	3)412	192290	76170	4487	235100	529751	391949	284103	1745265	58055	31 338	83089	385438	229548	157710	53320	1000701	131609	87973			264029		

REAL DUTPUT PRICES 1.36514 1.30324

230%6 148290 76170 4897 227453 595771 472630 284103 1 .90935 1.03475 .88584 .82853

TABLE &: MARK-UP PRICES WITH A SUMAWIEE PRICE OF 1.15

HEX1CO	(0RH	OTHER AG	PETRO	FERT	F 000	HOUSTRY SE	RUICES CO	HERCE	TOTAL	CAMPESING A	6 WRKS	ag sour	UPB WKRS I	URB CAPS	MERCH	URB MARG 1	IOT CON	60/1	EXPORTS	HAVEST	Inven	TOT IN	TOT FND	TOTAL
		1818			5743				8250	3704	1785	295	2418	1362	663	2243	12373	0	7	0	3226	3226	15606	23856
I. CODI AND BEANS 2. OTHER AGRICULTURE	007	11544			72934	7956	554		92995	4084	2316	2303	18024	11277	5531	5155	48689	145	3192	2782	5493		60 392	153297
	71			817	3132	13553	10123	3159	55026	527	254	1056	3752	3524	1 380	341	10832	.1718	5785	• . • •	520	570	18705	73731
3. PETROLEUM	950	3140		24		107	,		4230	· •	. 0	e	9	0	0	0	Ċ.	14	399	1	225			4869
4. FERTILIZER 5. FDOG PROCESSING	1,50	11578			33078	2797	910	6	48374	12628	8617	7095	65482	37887	20373	17742	171826	181	7379	199	2680	2879	182265	230841
	166			1072	13161	171947	28385	5493	230358	7350	4209	5319	49754	30853	13223	7027	118535	5129	17359	173296	9850	183146	324189	554526
4. UDUSIR(542	·		257	9133		56581	21982	128836	7938	8027	11171	99877	76521	32732	13253	249538	64406	2106	5015	0	5015	321064	449930
7. SERVICES B. CONNERCE	462			339	10390		11320	1982	73889	8723	6379	7112	63981	44223	19846	11711	161975	971	2555	30680	0	30680	176181	270070
IOTAL	2881			2522	147571		10787*	32615	641961	45156	31589	34370	302987	207647	93747	58271	773768	72563	38780	211973	22044	234017	1119128	1761099
WALUE ABOED BI CLASS																								
1. CAMPESTHOS	3647	2831							44796															44796
3. AG WORKERS	4281		,						31338															21 3 38
3. AS EDURGEOISTE	256	7 5168	5						54253															54253
4. URB UCREERS			13745	645	19053	113740	135404	43830	326839									40264						367103
5. UPB CAPITALISTS				•	41726	111102	174936		327763															327763
4. MERCHANT CAPITAL								147977	147977															14/9 *2
7. UPBVI MARGINALS					487	14230	21609	17069	57806															5760e
PRIVATE VALUE ALDED	2332	6 10706	1 31539	1542	6567	\$ 239292	332149	208874	990772									40264						1031036
					35	4 5385	7488	5335	21977															
SUBSICIES	6						1000	1	276															
EXPORT SUBSIDY		8 11	0	(V	13	• 63	,	•	2704															
GUAPARTEE PRICE SUB					1053	1 15817	13214	33916																
INDIRECT TAX	18	2 83				1 11011	13414		18470															
GOLENNENT PROFITS			1779			9 10408	5525	28580				3021	18897	18253	8241		48413							127370
NET TAX	-256	37 4.	10 2572	1 843	1003	7 10400	1161	20300																
uports	2	37 10	15 379	3 86	735	5 31714	4345	. 0	49399	- 360	-252	-436	-2950	- 2634	-1189	-464	-8284	536	1 6 7 6 0	2728	•	2728)	85196
SAVINGS						•				. 0	•	17297	48169	104497	47178	0	217139	14007	30156	6				261303
TOTAL	239	56 1532	97 2393	486	2306	13 554525	449899	270071	1761089	44796	31338	54253	367103	327763	147977	57804	1031036	127370	85196	,		261 30	3	
. y							,											#=========						المحادث فليتي
							440734	37841	,															

REAL DUTPUT PRICES 23096 148287 73913 4866 226500 553881 449724 270012 1.0327 1.03453 1.00076 1.00054 1.0189 1.00135 1.00039 1.00022

TABLE 7: PRICES OF PRODUCTION WITH A GUARANTEE PRICE OF 1.15

						•							AG BOUR		UKD LMF3		940 194 0 0	101 LUN	60/1	EXPORTS	INVEST	INVEN	107 INJ	101 FHD	TOTAL
L. CORI AND REAKS	189	1818	!	•	5753	٠	1	ţ	8240		3912	1787	304	ż120	1369	663	2211	12365		,		322?	3227		23851
2. OTHER AGRICULTURE	71	11434 2456	21487	817	73618 3136	8023 13557	559 10138	3362	93844 55023		4148 547	2339	2380	18205	11170	5591	5142	48967	- 146	3192	2804	5537	8341	62646	
A. FERTILIZER	940	3165	10715	23	3136	108	10138	3762	4184		347	260	1057	3799	3353	1403	327	10744	1718	5785	0	570	578		
5. FOUD PROCESSING		11441	;		32735	2765	901		47855		12722	8629	7144	45368	0	0	0	0	14	399	1	222	223	-	4820
. INDUSTRI	164	6580	3404	1054	12990	149542	28022	5420	227178		7414	4203	5497	50024	30401 28718	20357	17456		178	7379	197	2648	2845	180480	
. SEPVICES	531	1563	4553	252	8958	33410	55517	21558	126343		7937	7931	11323		73294	13403 32577	7677 12959	116939	5054	17359	170785	9.707	180492	319844	547022
L. COMMERCE	462	5791	1036	339	10403	42669	11337	1984	73931		8884	4444	7338	44788	42943	20167	12757	245036 162223	43084 971	210 <i>6</i> 2555	4912 306?3	0	4912 20673		
IGIAL	2856	44501	30489	2501	147593	270074	106481	32124	436619		45556	31593	35043	303321	199249	\$4159	57431	766352	71166	39780	209372	21911		1107591	
MUE ACLED BY CLASS												•													
. CAMPESIMOS	16493	28696							45189																
AG WORKERS	4280	27058							31338																45189
3. AG BOUPGEOISTE	2574	52732							55306																31338
. UPB WORKERS	••••		13732	445	17080	114019	135840	43884	327202																55304
S. URB CAPITALISTS				• •	39549	106727	148187		314463										40264	. · ·					36746?
. MERCHYNT CAPITAL								148605	148605																314465
7. URBAN MARGINALS					4726	13457	21155	17129	56968																148695 56968
PRIMATE VALUE ACOED	23348	108486	31642	1509	63355	234703	325182	207620	979071										40264						1019335
SUBSIDIES	64	300	2771	77	351	5318	7543	5341	21757				· ·												101/313
EXPORT SUBSICY	1	136		-4	51	-228	-42		-88	$(1,1) \in \mathcal{A}$															
GUAPARITEE PRICE SUB	2699						_	-	2699																
PIETPELT TAK	182	544	10687	22	10423	15576	12965	33952	84674				•												
GO/CREAENT PROFITS			17910	864					18774																
HET TAX	-2582	409	25829	813	10022	10514	5445	28410	79068		0	8	3080	18915	17513	8274		47784							124864
INFORTS	237	1095	3789	860	7366	31730	4352	• 0	49430		-347	-255	449	-2784	-2554	-1208	-463	-8284	536	14260	27286				
SAV INGS:													17633	48216	100256						4/200		27284		85227
*			•								•			40210	100230	47378		213483	14899	30187					258568
IOTAL	23860	154490	73839	4817	228335	547021	441490	279354	1746898		45184	31338	\$5304	367467	314463	148405	54968	1819335	126864	85227			258569		5 - ¹
		****************									<u> </u>											*********	-		
REAL DUTPUT PRICES	23095	148292 1.84272	73839	4846	226930 1.00686	554085 .98684	450504	270354																	

El Centro de Estudios Económicos de El Colegio de Mé xico, ha creado la serie "Documentos de Trabajo" para difundir investigaciones que contribuyen a la discusión de importantes problemas teóricos y empíricos aunque estén en versión preliminar. Con esta publicación se pretende estimular el análisis de las ideas aquí expuestas y la comunicación con sus autores. El contendio de los trabajos es responsabilidad exclusiva de los autores.

Editor: José Luis Alberro

Serie Documentos de Trabajo 1982

No. I	Ize, Alain "Disequilibrium Theories, Imperfect Compet- ition and Income Distribution: A Fix Price Analysis"
No. II	Levy, Santiago "Un Modelo de Simulación de Precios p <u>a</u> ra la Economía Nexicana"
No. III	Persky, Joseph and Tam, Mo-Yin S. "On the Theory of Optimal Convergence"
No. IV	Kehoe, Timothy J., Serra-Puche, Jaime y Solis, Leopoldo "A General Equilibrium Model of Domestic Commerce in Mexico"
No. V	Guerrero, Víctor M. "Medición de los Efectos Inflaciona rios Causados por Algunas Decisiones Guberna mentales: Teoría y Aplicaciones del Análisis de Intervención"
No. VI	Gibson, Bill, Lustig, Nora and Taylor, Lance "Terms of Trade and Class Conflict in a Computable General Equilibrium Model for Mexico"
No. VII	Dávila, Enrique "The Prices System in Cantillon's Feudal- Mercantile Model"
No. VIII	Ize, Alain "A Dynamic Model of Financial Intermediation in a Semi-Industrialized Economy"
No. IX	Seade, Jesús "On Utilitarianism and Horizontal Equity: When is the Equality of Incomes as such Desirable"
No. X	Cárdenas, Enrique "La Industrialización en México Duran te la Gran Recesión: Política Pública y Res- puesta Privada" CENTRO DE DOCUMENTACION

CENTRO DE ESTUDIOS ECONOMICOS