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Abstract

In the Assignment Game [Shapley and Shubik, 1971], most solution concepts yield a

multiplicity of solutions. We study the Assignment game in a Bayesian environment where

neither buyers nor sellers know the valuation of other players, and derive conditions on the

distribution of valuations to guarantee the uniqueness of equilibrium. Also, we provide a

closed-form solution when valuations follow an exponential distribution.

KEYWORDS:Assignment Game, Uniqueness, Newton’s Method, Contrac-

tion mapping

1 Introduction

In the Assignment Game, introduced by Shapley and Shubik in [1971], the literature focuses on

analyzing the conditions under which a competitive equilibrium does exist and the mechanisms

to compute them. These studies present characterizations of such equilibria based on core and ef-

ficiency features [Bikhchandani and Mamer, 1997, Alaei et al., 2016]. This approach establishes

that multiple equilibria may prevail in the Assignment Game, and does not propose refinements

to select a particular equilibrium. Our objective, in contrast, is to look at conditions under

which comparative statics naturally develop in the assignment games. Explicitly, our approach

guarantees uniqueness of equilibrium and a closed form solution of equilibrium pricing strategies.

∗El Colegio de Mexico, dcantala@colmex.mx
†Universidad Popular Autónoma del Estado de Puebla, damianemilio.gibaja@upaep.mx
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We analyze the set of equilibria in the Assignment Game in a Bayesian framework where buyers

and sellers have private information. We assume that sellers have different valuations of their

goods, and do not know the valuation of other sellers. We consider a variation of the Assignment

Game as a two-stage game. In the first stage, nature draws the valuation of each agent, namely

over the good they own for sellers and all goods for buyers. At stage two, sellers simultaneously

set prices. The final allocation is as follows: buyers rank all goods concerning their surplus and

goods are assigned to one of the buyers for whom the surplus is maximal.

In our setting, equilibrium prices are characterized by the inverse hazard rate function of buyers

valuations distribution. Our main result establishes a sufficient condition for the existence of a

unique price vector at equilibrium; specifically it requires the inverse hazard rate to be a con-

traction. Geometrically, this means that the inverse hazard rate behaves similarly to a constant

function, i.e., we can say that the tail distribution is almost a multiple of the density function.

The condition, however, is not necessary since uniqueness is also guaranteed when valuations are

uniformly distributed, although their associated inverse hazard rate is not a contraction.

As far as we know, ours is the first approach establishing the uniqueness of equilibrium prices in

the Assignment Game. In contrast, the multiplicity of competitive equilibria and core allocations

are pervasive in the Assignment Game [Shapley and Scarf, 1971]. Assuming that agents cannot

have more than one indivisible good, Quinzii [1982], and Kaneko and Yamamoto [1986] show that

the core of the economy is non-empty, and not necessarily unique. Also, Quinzii analyses the

conditions under which the core allocations coincide with competitive equilibrium allocations.

Similarly, Demange [1984] proves the existence of at least one competitive equilibrium, which is

not always unique, in a model with externalities. A generalization of the assignment game is made

by [Scarf, 1994] through the analysis of the production of indivisible goods. He emphasizes the

problems of performing comparative statistics when indivisibilities cause the failure of competitive

prices. Alkan, Demange and Gale [1991] show that the set of equilibria have a lattice structure

in the Assignment game, and the set of efficient and envy-free allocations is non-empty. Even

in the presence of the multiplicity of fair assignments, they show that it is possible to do some

comparative statistics when money increases. In similar models where the multiplicity of fair

allocations prevail, Svensson [2009] characterizes the set of fair allocation rules that are strategy-

proof, and Tadenuma and Thomson [1991] study when fair allocations satisfy consistency.

Our paper is closely related to the literature that analyses the characteristics of particular
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classes of games to guarantee the uniqueness of Nash equilibrium like [Green and Laffont, 1984,

Papavassilopoulos and Cruz, 1979, Aminof et al., 2016, Kolstad and Mathiesen, 1987]. Hence,

we analyse the features of the sellers’ expected utility that guarantee a unique price in the

Bayesian Assignment Game that we analyse. By assuming statistical independence between dis-

tributions of valuations, the first order conditions state that the direct effect by increasing the

price is equivalent to the indirect effect provided by the probability of not selling the good. It

implies that seller’s best responses are implicitly determined by an equation in term of a buyer’s

inverse hazard rate. Considering that buyers’ valuations are uniformly distributed, the previous

equation is linear, which induces a unique equilibrium price. In the general case, we observe that

each good equilibrium prices are independent of other goods, and they are the fixed points of the

inverse hazard function of some buyer who gets the largest surplus by buying it. So, assuming a

contraction inverse hazard rate function is sufficient to guarantee the existence and uniqueness

of equilibrium prices by the Banach Fixed-Point Theorem. The sufficient condition is tight; we

discuss variations under which the condition does not hold. We present an example where a non-

contracting inverse hazard rate, non-related to the uniform distribution, induces a high-degree

polynomial equation to compute the sellers’ best responses. The use of the Contraction Map

Theorem in game theory is not new; Long and Soubeyran [2000], and Ceparano and Quatieri

[2017] also use this approach to guarantee a unique Nash equilibrium in Cournot games and

weighted potential games, respectively.

When valuations are exponentially distributed, the inverse hazard rate is constant and satisfies

the contraction property. Hence, our main result guarantees the existence of a unique equilib-

rium price vector in this case. Even more, the exponential distribution allows us to get a closed

form solution for the equilibrium prices and perform some natural comparative statistics. Unsur-

prisingly, the relation between the price at equilibrium and its corresponding seller valuation is

positive; while the price decreases when the parameter of the exponential distribution increases.

When the parameter of the exponential distribution is interpreted as the average time required

to buy a good, this last result means that the more buyers are in a hurry, the higher the price.

Assuming exponential distribution in our model echoes empirical works in the real estate market

[Merlo et al., 2015]. Trippi [1977], Baryla and Ztanpano [1995], and Tsai [2010] suggest that

buying a house is an exponentially distributed event, in the sense that it depends on finding a

buyer who is willing to pay a certain price. Furthermore, Horowitz (1992) relates the parameter
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of the exponential function with the number of sellers: for increasing the searching costs, the

higher the number of houses on the market, the longer buyers needs to know and compare

all available options [Horowitz, 1992, Merlo and Ortalo-Magné, 2004]. Thus, they establish a

positive relationship between the exponential parameter’s inverse and the number of sellers.

Adding this assumption in our model implies that prices increase when the number of sellers

increases.

Markets where prices increase with the number of sellers arise in other settings. From a the-

oretical point of view, Rosenthal [1980] studies a model where sellers have monopolistic power

over a fraction of buyers (captive consumers), production costs are zero, and the preferences of

non-captive consumers are unknown. In this setting, prices increase when the number of sellers

increases because the probability to get non-captive buyers decreases and sellers focus on differ-

entiating their good. Bagwell and Lee [2014] characterize this behaviour in a game where sellers’

production costs are different and buyers’ valuations are private information. This result is sup-

ported by empirical evidence of markets where buyers make decisions based on sellers’ reputation

and search time [Gill and Thanassoulis, 2015, Head et al., 2014].

Our results are robust to the cases where agents preferences are exponentially distributed but

not identically; we present an example where parameters are different between buyers and other

where their valuations overlap. Finally, our analyses does not restrict to symmetric equilibrium.

The paper is organized as follows. Section 2 presents the model and the two-stage game. Section

3 analyses the set of equilibria, and the sufficient condition over the valuation distributions to

guarantee a unique price vector at equilibrium. In Section 4, we show that valuations exponen-

tially distributed satisfy the conditions for the existence of a single price, which allows computing

a closed form for it. Also, we perform some comparative statics. Conclusions are presented in

Section 5.

2 The Model

2.1 Buyers and Sellers

We consider a market with indivisible goods, money, and two disjoint sets of agents: a set of

sellers, S, and a set of buyers, B. Let r be a generic agent in S∪B. Money is a perfectly divisible
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good ω ∈ R that agents use to pay the bill. We assume that each agent initially has a certain

amount of money ωr ∈ R+. Also, all sellers initially own one and only one indivisible good, and

buyers initially do not own any good. We use ∅ whenever an agent does not own any good.

Let S be the set of m sellers, we use sj to denote a generic seller with j = 1, 2, . . . ,m. Since

each seller sj initially owns an indivisible good, we identify this good with sj to avoid extra

notation. By simplicity, sj initially owns an amount of money ωj = 0. So, the initial endowment

of sj is the money/indivisible good basket (0, sj). Also, seller sj has a valuation (type) vj ∈ R

of her good. Let Vj be the set of all possible types of seller sj. We consider that seller sj has

a preference relation over baskets (ω, s) ∈ R × {∅, sj}. Given a valuation vj, this preference

relation is represented by a utility function usj that maps baskets (ω, s) into real numbers, we

assume the following quasi-linear utility function for each seller sj

usj(ω, s; vj) =

 ω + vj if s = sj,

ω if s = ∅.

Consider B, the set of n buyers. We identify a generic buyer by i. Each buyer i initially owns

an amount of money ωi ≥ 0, and no indivisible good. Thus, the initial endowment of buyer i is

the basket (ωi,∅). Also, each buyer i has a valuation vji of good sj, for all sj ∈ S. So, the type

of buyer i is a vector v̂i = (v1i, . . . , vmi, ωi) ∈ Rm × R+. We denote by V̂i the set of all possible

types of buyer i. Also, each buyer i has a preference relation over baskets (ω, s) ∈ R× (S∪{∅}).

Given a type v̂i, this preference relation is represented by the utility function ui(·) that maps

baskets (ω, s) into real numbers. We assume the following quasi-linear utility function

ui(ω, s; v̂i) =

 ω + vji if s = sj,

ω if s = ∅.

The state of the market is the vector for all agents types v = (v1, . . . , vm, v̂1, . . . , v̂n) ∈
∏m

j Vj×∏n
i=1 V̂i. Let V be the set of all possible states of the market, i.e. V =

∏m
j Vj ×

∏n
i=1 V̂i. We

assume that the state of the market v is drawn according to a probability function f from V to

R, of common knowledge.

An assignment is a function Γ from S ∪ B to R× (S ∪ {∅}). We use Γ(r) = (Γω(r),Γs(r)) to

describe the allocation of r under the assignment Γ, for all r ∈ S ∪ B. That is to say, Γ assigns

to each member of the market r a basket composed of an amount of money, Γω(r), and at most

one good, Γs(r).
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An assignment Γ is feasible if it satisfies the following three conditions:

1.
∑

r∈S∪B Γω(r) ≤
∑n

i=1 ωi,

2. Let r, r′ ∈ S ∪B. If Γs(r) = Γs(r
′) ∈ S, then r = r′, and

3. For all s ∈ S there exists some r ∈ S ∪B such that Γs(r) = s.

Conditions 2 and 3 tell us that at Γ, any good in the market is assigned to one and only one

agent.

We say that a basket (ω, s) is individually rational (IR) for agent r if and only if the utility

of r by holding (ω, s) is greater or equal than the utility of r by holding her initial endowment.

So, Γ is an individually rational (IR) assignment if each member of the market weakly prefers

her allocation under Γ to her initial endowment.

2.2 The Game

Agents interact in a two-stage game. Nature moves first determining the type of each member of

the market according to the probability distribution f . All members of the market observe their

type but do not observe the type of the others.

At stage 2, sellers decide simultaneously to set the price of their good. If a seller sj decides to

sell her good, she sets a non-negative price pj. Otherwise, she sets a price pj = +∞. Thus, Aj =

R+ ∪ {+∞} is the set of actions of seller sj. Consequently, a price vector p = (p1, p2, . . . , pm)

is an element of A1 × A2 × · · ·Am.

At the end of the game, each sellers sells her good to a buyer for whom it is the preferred

good among all goods, and he does not sell his good when his good is not the best good for

some buyer. Payoffs are determined by the final assignment Λ, which is generated by a random

procedure. Note that a seller s gets the basket (ps,∅) = Λ(s) if and only if a buyer i gets the

basket (ωi − ps, s) = Λ(i) and ui(ωi − ps, s) is maximal.

2.3 The solution concept

To present the solution concept of our game, we introduce the following notation. A decision

rule for seller sj is a function σj : Vj → Aj mapping a type into a price. Thus, a pure strategy
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for seller sj is an element σj ∈ Σj = {σj : σj is a decision rule}. Let σ = (σ1, σ2, . . . , σm) be the

profile of sellers decision rules, where σ−s denotes the profile of decision rules different to σs.

Sellers pay-offs depend on the final allocation Λ, which also depends on other sellers’ strategies.

Hence, each seller is assigned to a basket Λ(sj) = Λ(σj, σ−j)(sj). Thus, a seller s sets her price

by analyzing her expected utility function, denoted by E[us]. We present the concept solution in

the following definition.

Definition 1. Let σ∗ = (σ∗1, . . . , σ
∗
m) be a profile of pure strategies of sellers and buyers, respec-

tively. The vector (σ∗) is a Bayesian Nash equilibrium if

E[usj(Λ(σ∗j , σ
∗
−j)(sj))] ≥ E[usj(Λ(σj, σ

∗
−j)(sj))],

for all sj ∈ S and σj ∈ Σj.

3 Equilibrium Analysis

To analyze the equilibrium of stage 2, we know that sellers simultaneously set their prices rules

Given that each seller only knows her valuation, the solution of stage two is a profile of decision

(ps(vs))s∈S such that each seller maximizes her expected utility function. That is to say, the

concept solution for this stage is the Bayesian Nash equilibrium. Moreover, we know that the

final expected utility of each seller depends on the assignment Λ that randomly assigns each sold

good sj to a buyer i for whom vji − pj is maximal. Note that the assignment procedure may

generate many final allocations because the assignment procedure randomly assigns a good to

some buyer who asks for it. Then, the set of sellers that sell their good does not change in all

the possible assignments, and the only difference between them is the name of the buyers who

buy a good. Therefore, sellers receive the same payoff regardless the final assignment.

The previous discussion implies that seller sj earns pj when she sells her good to some buyer i.

Hence, the utility of sj is independent of the name of the buyer dealing with only one of them.

Consequently, the payoff function of sj is given by

usj(ω, s; vj) =

 pj if sj sells her good,

vj otherwise.
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To simplify the algebra, we consider usj = usj − vj which is a monotonic transformation of the

payoff function usj . From now on, we use the following payoff function

usj(ω, s; vj) =

 pj − vj if sj sells her good,

0 otherwise.

3.1 Expected utility of sellers

An equilibrium decision rule for seller sj is a decision rule σj that maximizes her expected utility

function E[usj ], which is equivalent to maximizing E[usj ]. Formally, a decision rule, of seller

sj, maps a valuation vj into a price pj, i.e. σj(vj) = pj. Since seller sj does not know buyers’

valuations, sj may gain pj − vj, in case of selling her good, or 0, otherwise. Given these two

possible cases, the expected utility of sj is

E[usj ] = (pj − vj)Pr[Selling] + 0Pr[Not selling].

Let zji = vji− pj be the surplus of i when she buys good sj. Note that, if some good sj is bought

to some buyer i, the assignment procedure and the fact that buyers are not strategic guarantee

that the basket (ωj−pj, sj) is the top basket of i. Since we assume a quasi-linear utility function,

buyers buy a good that provides the largest positive surplus since we assume a quasi-linear utility

function. Thus, the probability that sj sells her good can be described as follows

Pr[Selling] = Pr

[
zji ≥ max

sτ∈S

{
ziτ | ziτ ≥ 0 and τ 6= j

}
for some i ∈ B

]
.

Consequently, we can re-write the expected utility of sj as follows

E[usj ] = (pj − vj)Pr
[
zji ≥ max

sτ∈S

{
ziτ | ziτ ≥ 0 and τ 6= j

}
for some i ∈ B

]
. (1)

3.2 Sellers best responses

To determine the best responses at equilibrium we proceed by maximizing the expected utility

E[usj ] of each seller sj. Then, it is necessary to compute the probability Pr[Selling], that

corresponds to the event where the surplus zji is maximal for some buyer i. This surplus depends

of buyers i valuation vector v̂i, and the price vector p, set at the end of stage two. We know that

sellers do not observe buyers valuations vector and other sellers prices, then v̂i is the realization
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of the random vector V̂i = (V1i, V2i, . . . , Vmi), and pτ is the realization of the random variable

Pτ = στ (Vj). However, under our Bayesian framework, we have that the probability distribution

f of the random vector V = (V1, V2, . . . , Vm, V̂1, . . . , V̂n) is common knowledge. Moreover, we

assume that random variables Vτ and Vτi are independent and identically distributed for all

τ 6= i and i = 1, 2, . . . , n.

Given the description of Pr[Selling], we use VM := maxsτ∈S{ziτ |ziτ ≥ 0 and τ 6= j}. In this

setting, it is important to remark that sellers do not necessarily follow a symmetric behavior

because VM is the largest surplus, or the maximum order statistic. Also, Vm is a non-negative

random variable because each surplus zis is a random variable, for all s ∈ S, and each buyer

only asks for a good if it provides her a positive payoff. This notation allows us to rewrite the

expected utility function (1) in the following way

E[usj ] = (pj − vj)Pr[vji − pj > vM and vM ≥ 0]. (2)

Expression 2 establishes the way to compute Pr[Selling]. In words, we get this probability

by integrating the joint distribution of Vji and VM , namely fVjiVM , over the probability region

R = {(vM , vji) ∈ R2 | vji − pj > vM and vM ≥ 0}. Graphically, we see this region of integration

in Figure 1.

Figure 1: Probability region.

Remember that we assume that Vj and V̂i are statistically independent for all j = 1, 2, . . . ,m

and i = 1, 2, . . . , n. Hence, Vji and VM are statistically independent because VM is the largest

surplus among all sellers surpluses, excluding the surplus Zi
j; VM is a transformation of random
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variables that are statistically with Vj. Consequently, the joint distribution between Vji and VM

is equal to the product of their marginal distributions. So, we have that fVjiVM = fVjifVM , and

Pr[Selling] =

∫ ∞
pj

∫ vji−pj

0

fVji(vji)fVM (vM)dvMdvji

=

∫ ∞
pj

fVji(vji)

(∫ vji−pj

0

fVM (vM)dvM

)
dvji

=

∫ ∞
pj

fVji(vji) (FVM (vji − pj)− FVM (0)) dvji,

where FVM is the cumulative distribution function of VM , a non-negative variable because buyers

do not ask for unacceptable goods. This means that FVM (0) = 0, and

Pr[Selling] =

∫ ∞
pj

fVji(vji)FVM (vji − pj)dvji. (3)

Now, consider the change of variable x = vji − pj that implies dx = dvji and vji = x + pj. We

substitute vji by x into expression (3). We get the following integral

Pr[Selling] =

∫ ∞
0

fVji(x+ pj)FVM (x)dx. (4)

We know that FVM is right continuous, which implies its integrability on any interval [a, b], with

a ≥ 0. Also, this cumulative distribution is upper and lower bounded by 1 and 0, respectively.

Since the distribution function fVji is non-negative, we can apply the First Mean Value Theorem

for infinite integrals [Gradsteyn and Ryzhik, 2014] on expression (4). Then, there exits µ ∈ [0, 1]

such that

Pr[Selling] = µ

∫ ∞
0

fVji(x+ pj)dx

= µ(1− FVji(pj)).

The constant µ is the mean of the function fVM on the interval [0, vji − pj]. This implies that

µ is the mean of the maximum surplus VM , excluding vji − pj. Hence, Pr[Selling] tells us that

sj only cares to provide i a greater surplus than the mean of VM , considering that other sellers

profile of prices is p−sj = (pτ (Vτ ))τ 6=j.

By the previous discussion, the expected utility function of seller sj is

E[usj ] = µ(pj − vj)
(
1− FVji(pj)

)
. (5)
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To maximize the expected utility of seller sj, we have to solve the first order condition, i.e.

∂E[usj]/∂pj = 0. Hence, we derive expression (5) with respect to pj, which implies that seller sj

best response is the solution of the equation

µ
(
1− FVji(pj)

)
− µ(pj − vj)fvji(pj) = 0.

Rearranging the previous expression, we get that(
1− FVji(pj)

)
= (pj − vj)fVji(pj).

This means that sj best responses balance the direct effect of increasing the price with the

indirect effect of not selling the good. Even more, we can rearrange the previous expression in

the following way

pj =
1− FVji(pj)
fV ji(pj)

+ vj. (6)

Expression (6) implies that best decision rules p∗j(vj) of sj are implicitly defined by an equation

which depends on the inverse hazard rate of buyer i. Considering

γj(pj) =
1− FVji(pj)
fV ji(pj)

+ vj, (7)

we have that best responses satisfy the following property

γj(pj) = pj,

where γ can be a linear or non-linear function. Therefore, best responses of seller sj are fixed

points of (7).

3.3 Existence and uniqueness conditions

As we noted in the previous section, sellers’ best responses are fixed points of the function γj

(see expression (7)) which is not necessarily a linear function. To find fixed points of non-linear

functions, it is common the use of numerical techniques like the Newton’s Method. In this section,

we part from this method to analyze the existence and uniqueness of sellers decisions rules in our

Bayesian version of the assignment game. Below, we describe Newton’s Method to compute the

solutions of a non-linear equation, to later explain its relation with fixed points.

Consider an equation g(x) = 0, where g is a non-linear function. Suppose that this equation has

at least one root x∗ ∈ R, i.e. g(x∗) = 0. The Newton’s Method proceeds as follows
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Step 0. Start with an initial guess, x0 ∈ R, for the location of the root.

Step t. To find an equation’s root, we improve the initial guessing by iterating repeatedly the

next expression

xt+1 = xt −
g(xt)

g′(xt)
.

Previous procedure generates the set {xt}∞t=0 = {x0, x1, . . . xt, . . .}, which is called the Newton’s

succession. It is possible to demonstrate that x∗ = lim
t→∞

xt is a root of the non-linear equation

g(x) = 0 [Palais, 2007].

Two immediate questions arise about Newton’s method application. The first one is related

to the convergence of Newton’s succession. The second one is about the independence of the

initial guess, i.e., Does different initial guesses get the same convergence point? To answer these

questions, it is important to note that, if Newton’s succession {xt}t∈N converges to some x∗, we

have that

x∗ = x∗ − g(x∗)

g′(x∗)
.

In other words, the point x∗ is a fixed point of the function

h(x) = x− g(x)

g′(x)
.

This means that finding a unique root for equation g(x) = 0 is equivalent to find a unique fixed

point of function h. To analyze the uniqueness of fixed points, it is necessary to introduce the

definition of contractions.

Definition 2. A function g : R → R is a contraction if there exists a constant L such that

0 < L < 1 for any x, y ∈ R:

|g(x)− g(y)| ≤ L|x− y|.

The contraction property is a sufficient condition to guarantee the convergence of Newton’s

succession. Even more, this property makes the convergence process independent of the initial

guess as it is stated in the following theorem.

Theorem 3.1. (Contracting Map, Banach [1922]). Consider h : X ⊂ R→ X a contrac-

tion. The function h has a unique fixed point x∗ ∈ X. Also, the Newton’s succession converges

to x∗ as n→∞ for any x0 ∈ X.
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Proof. A sketch of the proof is shown in the Appendix. For more details, see [Palais, 2007].

The Contracting Map Theorem guarantees the existence of a unique fixed point when functions

are contractions. Even more, Newton’s Method establishes a link between finding fixed points,

and the roots of a non-linear equation. Hence, if function (7) is a contraction, the Theorem 3.1

implies that sellers best response is unique.

Theorem 3.2. Consider a market where buyers are non-strategic, goods are assigned to a buyer

who considers it her best good, and

γj(pj) =
1− FVji(pj)
fVji(pj)

+ vj.

If γj is a contraction map on a subset X of R, then γj has a unique fixed point p∗j . Even more,

the Newton’s succession

pn+1 = pn −
γj(pn)− pn
γ′j(pn)− 1

converges to p∗j regardless the initial guess p0 ∈ X.

Proof. It is a consequence of Theorem 3.1.

Theorem 3.2 establishes that sj best response is unique when γj is a contraction. Even more, we

can use the Newton’s Method to find it.

Remark 1. Geometrical Interpretation of the Contraction Property. If a function g is a

contraction, this means that the function reduces the distance between their images. Moreover,

we can rewrite this condition as follows

|g(x)− g(y)|
|x− y|

≤ L, for some 0 ≤ L < 1.

Hence, the slope of the tangent line of g(x) is bounded by L, which makes them very similar to

a constant or linear functions.

In our case, we impose the contraction property over γ = (1− FVji)/fVji , to analyse the unique-

ness of equilibrium prices, which means that the inverse hazard rate function is similar to a

constant/linear function by Remark 1. Hence, we can say that 1− Fvji is, approximately, multi-

ple of fVji .

The following example shows that multiple equilibria arise when the function γ is not a contrac-

tion.
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Example 3.1. Multiple equilibrium. By Theorem 3.2, the bests responses of seller sj depend

on the distribution fVji . We consider the following distribution function:

fVji(v) =

 1+v4

630
if 0 ≤ v ≤ 5,

0 otherwise.
.

Hence, the cumulative distribution function is

FVji(v) =


0 if v ≤ 0

v
630

+ v5

3150
if 0 ≤ v ≤ 5

0 if v ≥ 5.

. (8)

Considering fVji and FVji , the equation that implicitly defines best responses of seller sj is

p5j
525
−
vjp

4
j

630
+

pj
315
− vj

630
− 1 = 0.

Then, bests responses are solutions of a five degree equation, which at most have five roots.

According to the Descartes’ Rule, it is possible to approximate the number of positive roots

by counting the number of sign changes. In the previous equation, we have three changes of

sign, which means that seller sj has at most three positive real roots, and at least one real root.

We analyse the multiplicity of positive roots through the contraction condition. By doing some

algebra, we get that

γ(pj) =
1− FVji(pj)
fvji(pj)

=
3150− 5pj − p5j

5(1 + p4j)
for all pj ∈ [0, 5].

Now note that

|γ(0)− γ(1)| = 1578

5
> 1,

this means that γ is not a contraction on the interval [0, 5], where it is defined. Hence, the

probability distribution (8) does not induce a unique best response for seller sj. Therefore,

equilibrium prices are not unique.

�

Despite that multiple equilibria arise when γ is not a contraction, in the following section we

show that this condition is not necessary. In other words, it is sufficient to check if γ satisfies

such condition to verify the uniqueness of equilibrium prices, but it is possible to have a unique

equilibrium even if γ is not a contraction.
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Although the equilibrium price is implicitly defined by expression (7), assuming that such func-

tion is a contraction allows us to analyse the relationship between p∗j and vj. This relationship

is positive when the density function of Vji is positive.

Proposition 3.1. The relationship between p∗j and vj is positive when ∂fVji(pj)/∂pj ≥ 0.

Proof. We know that p∗j is implicitly defined by the equation

(1− FVji(p∗j)) = (p∗j − vj)fVji(p∗j).

The implicit derivative with respect to vj is

−fVji(p∗j)
dp∗j
dvj

=

(
dp∗j
vj
− 1

)
fVji(p

∗
j) + (p∗j − vj)

dfVji(p
∗
j)

dp∗j

dp∗j
dvj

fVji(p
∗
j) =

dp∗j
dvj

(
2fVji(pj) + (p∗j − vj)

dfVji(p
∗
j)

dp∗j

)
In case of selling, we know that (p∗j − vj) > 0. When ∂fVji(pj)/∂pj ≥ 0, we have that

2fVji(pj) + (p∗j − vj)
dfVji(p

∗
j)

dp∗j
> 0

because fVji is a density function. We conclude that

dp∗j
dvj

> 0.

3.4 The uniform distribution

Remark 1 incentives us to verify if the uniform distribution, a constant distribution, induces a

unique price vector at equilibrium. Assuming that Vji is uniformly distributed on an interval

[a, b], we have that

fVji(v) =

 1
b−a for all v ∈ [a, b],

0 otherwise.
and FVji(v) =


0 if x ≤ a

x−a
b−a if x ∈ [a, b]

1 if x ≥ b.

Substituting in expression (6), we get that

pj =
1− bj−a

b−a
1
b−a

+ vj

= b− pj + v.

15



Therefore, the equilibrium price is p∗j = b/2 + vj. However, considering γ as it is defined in

expression (7), we note the following

|γ(x)− γ(y)| = |b− x− (b− y)| = |x− y|.

Hence, γ is not a contraction when buyers’ valuations are uniformly distributed. This means

that the contraction requirement over γ is sufficient, but not necessary.

3.5 Particular case: low price auctions

In this section, we discuss how sellers equilibrium behavior in our Bayesian setting is similar to

an auction where a seller sells her good by offering the lowest price to the buyers who are willing

to pay the price. To simplify the explanation, we consider that all goods are homogeneous, which

means that buyers have the same valuation for all of them, i.e. vji = vki for all sj, sk ∈ S. Also,

we assume that buyers valuations are common knowledge. So, buyer i buys good sj if and only

if vji − pj > vki − pk for all sk ∈ S − {sj}, i.e. seller sj sells her good by setting a price who

provides i the largest surplus. Since we assume that i is indifferent between all the goods in the

market, sj sells her good to i if and only if she sets the lowest price.

At equilibrium, we know that p∗j is seller sj best response of other sellers best responses, denoted

by p∗k = σ∗(vk) for all k 6= j. When i buys the good sj, the discussion in the previous paragraph

guarantees that p∗j < minsk 6=sj{p∗k = σ∗(vk)}. Assuming that σ∗ = (σ∗k)k 6=j is a symmetric profile

of increasing best responses, we have that

min
sk 6=sj
{p∗k = σ∗} = σ∗(Vm = min

sk 6=sj
{vk}).

The fact that σ∗ is increasing also implies that its inverse function (σ∗)−1 exists. Thus, sj sells

her good to i if and only if (σ∗)−1(p∗j) < Vm. Consequently, Pr[Selling] = Pr[(σ∗)−1(p∗j) < Vm].

Substituting the previous discussion in the expected utility of sj, we get that

E[usj ] = (vj − pj)Pr[(σ∗)−1(p∗j) < Vm].

Let FVm be the cumulative probability function of Vm, then

E[usj ] = (vj − pj)(1− FVm(σ∗)−1(p∗j)). (9)

When buyers valuations are private information and goods are non-homogeneous, we cannot

ensure that sj sets the lowest price for buyer i. However, note that expected utilities in both
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cases, functions (5) and (9) respectively, have the same structure because a good is sold when

a buyer maximizes her surplus with it. Consequently, in the general case we can conclude that

each seller focuses on setting a price for which some buyer is willing to pay.

Now, we investigate the features of the equilibrium price. To find the best responses at equilib-

rium, we compute the first derivative of E[usj ] by applying the Inverse Function Theorem. Then,

sj best responses are the solutions of the following equation

−(1− FVm((σ∗)−1(p∗j)) + (vj − pj)
(
− fVm((σ∗)−1(pj))

(σ∗)′((σ∗)−1(pj))

)
= 0.

Let p∗j = σ∗(vi) be the best response of sj at a unique symmetric equilibrium. This best response

satisfies the first order condition, i.e., which means that

−(1− FVm(vj)) + (vj − σ∗(pj))
−fVm(vj)

(σ∗)′(vj)
= 0

−(σ∗)′(vj)(1− FVm(vj)) + (vj − σ∗(pj))(−fVm(vj)) = 0

−(σ∗)′(vj)(1− FVm(vj))− σ∗(pj)(−fVm(vj)) = vjfVm(vj)

Note that

d[−σ∗(vj)(1− FVm(vj))]

dvj
= −(σ∗)′(vj)(1− FVm(vj))− σ∗(pj)(−fVm(vj),

then

d[−σ∗(vj)(1− FVm(vj))]

dvj
= vjfVm(vj). (10)

Integrating expression (10), we conclude that

σ∗(vj) =
−1

1− FVm(vm)

∫ vj

0

τfVm(τ)dτ. (11)

Expression (11) means that the best response of sj is the expectation of Vm conditional to those

values greater than vj, i.e.

σ∗(vj) = E[Vm|Vm > vj],

which means that sj sells her good when she expects than other sellers valuations are greater than

her valuation. Hence, restricting the analysis to homogeneous goods and assuming that buyers

valuations are common knowledge, we observe that equilibrium prices are explicitly defined, which

is not the case when goods are heterogeneous and buyers valuations are private information (see
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expression (7)). However, in both cases, it is clear that p∗j depends on vj, as the following

proposition illustrates. Even more, the relationship between them is positive, as in Proposition

3.1.

Proposition 3.2. At equilibrium, sj sets prices above her valuation.

Proof. Integrating by parts expression (11), we get that

σ∗(vj) =
−1

1− FVm(vj)

(
τ FVj(τ)

∣∣vj
0
−
∫ vj

0

FVm(τ)dτ

)
=

−1

1− FVm(vj)

(
vjFVj(vj) + vj − vj −

∫ vj

0

FVm(τ)dτ

)
=

−1

1− FVm(vj)

(
vjFVm(vj) + vj − vj −

∫ vj

0

FVm(τ)dτ

)
=

1

1− FVm(vj)

(
vj(1− FVm(vj)) +

∫ vj

0

FVm(τ)dτ −
∫ vj

0

1dτ

)
= vj −

1

1− FVm(vj)

∫ 0

vj

(FVm(τ)− 1)dτ.

Note that FVm(vj)− 1 < 0, hence −
∫ 0

vj
(FVm(τ)− 1)dτ > 0.

4 Equilibrium Characterization for the Exponential Case

In this section, we show that an exponential distribution induces a function γ that satisfies the

contraction condition, and consequently behaves like in explanation (1). Even more, this distri-

bution function allows us to compute a closed form solution to the Bayesian Nash equilibrium,

which is suitable to perform some comparative statistics for different probability distribution

assumptions.

4.1 Identically distributed random variables

Consider that Vj, Vji are independent and exponentially distributed with parameter λ > 0. So,

their probability distributions are

fVji(x) = fVj(x) =

 λe−λx if x > 0,

0 otherwise,
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for all j ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n}. The mean of this distribution, 1/λ, is the occurrence

of selling the indivisible good. Thus, if λ increases, buying the object happens more quickly. By

expression (5), we have that

E[usj ] = (pj − vj)µe−λpj . (12)

Although it is not difficult to solve the first order condition of E[usj ] when Vji follows an expo-

nential distribution, in the following proposition we show that γ = (1−FVji)/fVji is a contraction

map to show the application of Theorem 3.2.

Proposition 4.1. The function γ is a contraction map when Vji is exponentially distributed.

Proof. We have that

γ =
1− FVji
fVji

=
1− (1− e−λx)

λe−λ

=
1

λ
.

Hence, γ is a constant function when Vji is exponentially distributed. Clearly, γ is a contraction.

To derive a closed for for the equilibrium price, we use expression (6). Consequently, we get that

pj =
1

λ
+ vj.

The following theorem summarizes the previous discussion.

Theorem 4.1. Suppose that Vj and Vji are independent and exponentially distributed with pa-

rameter λ > 0. The price that each seller sj sets at equilibrium is

p∗j(vj) =
1

λ
+ vj,

for all sj ∈ S.

Since the decision rule at equilibrium is unique, we can do some comparative statics.

Corollary 4.1. Let p∗j be the unique price at the symmetric equilibrium found. Then
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1. The relation between p∗j and vj is positive, and

2. the relation between p∗j and λ is negative.

Proof. By Theorem 4.1, we know that p∗j = 1/(m + 1)λ + vj. Taking the derivatives of p∗j with

respect to vj, λ and m, we get that

∂p∗j
∂vj

= 1 > 0,

∂p∗j
∂λ

= − 1

λ2
< 0.

In other words, the price increases when the valuation of seller sj increases, and decreases when

the parameter λ increases. This last point implies that prices increase when buyers are in a hurry

to buy an indivisible good.

4.2 Non-identically distributed random variables

By expression (7), we know that equilibrium characterization only depends on how the buyer i

values the good. Thus, uniqueness of selling prices do not change when we assume that variables

Vjτ and Vj are not identically distributed for all τ ∈ B and sj ∈ S. For example, if we consider

that each random variable Vji is exponentially distributed with parameter λi, it is easy to see

that equilibrium price vector is

p∗j =
1

λi
+ vj.

4.3 The number of sellers in the market

In the case of valuations that are exponentially distributed, the interpretation of the distribution’s

parameter is interesting. As we mentioned before, its inverse is the mean of the distribution, which

means how fast the event, buying an object, happens. So, when 1/λ tends to zero, the buyer

wants to buy a house more quickly. This observation allows us to relate λ to the number of sellers

in the market.

Head, Lloyd-Ellis, and Sun [2014] find that buyers delay buying a house when there is a large

number of sellers. Regarding the exponential distribution, this means that the mean of the
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buying event increases as the number of sellers increases. So, we have that 1/λ depends on the

number of sellers, i.e. 1/λ = 1/λ(m), and there is a positive relationship between 1/λ and m.

For example, we can assume that 1/λ(m) = m, i.e., the buyer checks all objects, one at a time,

to buy one. In this case, the Theorem 4.1 implies that

p∗j =
1

λ
(m) + vj.

Therefore
∂p∗j
∂m

=
d(1/λ)

dm
+ 0 > 0.

In words, equilibrium prices increase when the number of sellers increases.

4.4 Overlapping Valuations

In this section, we analyze the situation where valuations are overlapped but exponentially dis-

tributed. So, we assume that variables Vj and Vji have a minimum value rj and rji, respectively.

Consequently, their probability distributions are

fVj(vj) =

 λje
−λj(vj−rj) if vj > rj,

0 otherwise.
and fVji(vji) =

 λjie
−λji(vji−rji) if vji > rji,

0 otherwise.

Consequently we have that FVji(pj) = 1− e−λji(pj−rji). By substituting in expression (6), we get

that

p∗j =
e−λji(pj−rji)

λjie−λji(pj−rji)
=

1

λji
+ vj.

Therefore, comparative statics are similar to the ones presented in Corollary 4.1.

5 Concluding Remarks

We analyze the uniqueness of equilibrium prices in a Bayesian version of the Assignment Game

assuming that sellers are strategic, but buyers not. In this framework, we show that equilibrium

prices are determined by the features of the valuation distribution function of the buyer who gets

good. Even more, we find that quotient between the cumulative distribution function and the

density function that are contraction induce the existence of unique price equilibrium.

The Contracting Map theorem indicates us that buyers valuations distribution is similar to

constant/linear function. So, we demonstrate the exponential probability functions satisfy the
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contraction’s requirements, and we get a closed form solution via this type of distributions. Under

the exponential distribution, the uniqueness prevails even if valuations are not identical, or if they

are overlapped. Also, comparative statistics are naturally performed in this closed form solution,

reflecting empirical evidence facts.
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A Contracting Map Theorem

Theorem A.1. (Contraction Mapping) Assume that g(x) is a continuous function on [a, b].

Also, suppose that g(x) satisfies the Lipschitz condition (2), and that g([a, b]) ⊆ [a, b]. Then g(x)

has a unique fixed point c ∈ [a, b]. Also, the Newton’s succession {xn} defined in the main text

converges to c as n→∞ for any x0 ∈ [a, b].

Proof. By the Brower’s Theorem, we know that g(x) has at least one fixed point. So, to prove

the uniqueness of the fixed point, we assume that there are two fixed points c1 and c2. We will

prove that these two points must be identical. We know that

|c1 − c2| = |g(c1)− g(c2)| ≤ L|c1 − c2| and 0 < L < 1,

consequently, c1 must be equal to c2.

Finally, we need to prove that the succession described in the main text converge to c, for any

x0 ∈ [a, b]. note that

|xn+1 − c| = |g(xn)− g(c)| ≤ L|xn − c| ≤ . . . ≤ Ln+1|x0 − c|.

Since 0 < L < 1, we have that |xn+1 − c| → 0, as n→∞. The succession converges to the fixed

point of g(x), independently of the starting point x0.
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