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Preface 

The material of these lecture notes was originally presented in a graduate econometrics 
course at EI Colegio de Mexico, Mexico City. Emphasis has been put on applications, 
and on theory that is important in practice. This means that proofs have in many places 
been replaced by discussions of the main ideas and their relation to pratrical applications. 

It is the intention of the notes that they will enable students to perform a statistical 
analysis of times series data using advanced modern techniques. 

A variety of statistical packages are available today, and most of them provide time 
series analysis at some level. In these notes we use the package ITSM (Interactive Time 
Series Modelling; Brockwell and Davis, 1991, Springer Verlag) as a reference. 

The notes are organized as follows. In chapter 1 we give a description of stationarity, 
transformations, trends removals and differencing techniques. Chapter 2 accounts for 
a detailed treatment of ARMA models, and generalized linear processes. In chapter 3 
we describe various estimation procedures, both parametric and non-parametric, order 
selection techniques and goodness of fit procedures. Multiplicative models and (S)ARIMA 
models are dealt with in chapter 4, and in chapter 5 we introduce the important frequency 
analysis. Multivariate time series and transfer function models, together with multivariate 
spectral analysis, are presented in chapter 6. 

The reader may wonder why prediction theory has not been presented. The reason 
is that prediction of ARMA models, and related models, using best linear predictors, is 
a trivial matter once the analysis has been performed. Prediction theory is, however, 
far from trivial, and the classical time series method is only one way of approaching the 
problem. A more profound introduction to forecasting would involved a whole course. 

The exposition has been kept reference free and self-contained. At the end the reader 
will find a brief bibliographic guide for further reading. 

Mexico City 
June, 1995 
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Chapter 1 

Stationarity and Transformations 

1.1 Introduction 

The assumption of stationarity is essential in most applications of time series analysis . 
The reason for this is that unlike classical statistical problems we have usually only one 
single oberservation available, which is the realization of the whole series itself. 

Statistical methods are based on replications of experiments, so that we are provided 
with information about an experiment using various measurements. In the standard 
theory these measurements are assumed to be independent identically distributed (i.i.d) , 
and the interpretation is simply that the experiment is performed a number of times 
independently of each other. These measurements constitutes the basis of the statistical 
analysis . 

In time series analysis we observe observations through time, and usually we are only 
provided with one observations per time unit. This could for example be the Dow Jones 
index every day, the volume traded at Wall Street every week or an exchange rate at a 
certain time of the day. In all these examples replication is not possible because of the 
nature of the data. Even more, the quantities in these examples are purely deterministic, 
and can hence be recorded without error. 

The goal of time series analysis is to describe data in such a way that it may provide 
an understanding of the phenomena we are considering, or to extract some basic features 
from the data which enable us to make predictions. To this end we would like to extract 
statistical measures from the data, such as the correlation between variables. The basic 
assumption of stationarity means that the correlation from one day to the' other, from 
one week to the next etc., does not depend on which days or weeks we consider: if we 
for example consider the a measurement of the volume traded per week at Wall Street 
through one year, the correlation between traded volumes at week 1 and 2 is the same as 
between week 34 and 35. 
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Notation 1.1.1 Throughout the notes we will use capital letters for random variables, 
such as X, Y , Xs etc., and small letters for the corresponding data/observations, such as 
x,y, xs. 

Let .. . , X- n , ... , X-I, X o, Xl , ... , X n , ... be a time series. We shall use the notation X = 
{X.}tE7Z . Then we have 

Definition 1.1.1 X is (second order) stationary ifIE(X,) does not depend on t , IE(Xt) < 
<Xl and 

Cov(Xt , XHh) = "((h) 

only depends on h, for all t,h E Zl. In that case, "((h) tS called th e auto- covariance 
function of {X.}. Introducing the variance of series 

ai = var(Xt ) = "((0), 

we define the auto- correlation function p( h) by 

p(h) = "((h) = ,(h). 
al ,(0) 

Note: The second assumption IE(Xt) < <Xl is only technical, and needed for the variance 
to exists , so that the covariance exists as well. 

In a time series the most important feature to exploit is the correlation between the 
measurements at different times. It is the correlation that tells us to which degree the 
variables are related to each other, and hence gives important information to be used 
when predicting future values. 

For an observed time series it is therefore desirable to estimate the correlation or 
'covariance between the variables. If we would not have assumed stationarity, but simply 
allowed the correlation between data to vary arbitrarily with time, we would not be able 
to estimate the correlation between the data values. To illustrate this point consider a 
time series with observations xo, Xl, . .. , XN. Assume that series has zero mean. We want 
to estimate the correlation between any two consequtive point, Xo and Xl, Xl and Xl 
etc. If we do not assume stationarity we simply have that 

C~v(Xo , Xd XOXI 

C~V(XI' X 2 ) - XIX 2 

which are useless estimates since they are only based on one observation, namely the 
empirical covariance between Xo and Xl' If we in turn assume stationarity we have that 

Cov(X"Xt+1 ) 
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is the same for all t, and hence we can estimate the covariance as the average 

This estimate is of course much better, and is in fact useful in an statistical analysis. 
Therefore stationarity is essential and important. 

Many time series which are obviously not stationary are hence transformed into sta­
tionary time series, and statistical analysis are performed to the stationary series. When 
conclusions are drawn or prediction performed, the stationary series is then transformed 
back to its original. 

1.2 Formal framework 

In this section we introduce carefully terms and definitions, some of which have already 
been introduced vaguely in the introduction and which are more or less assumed to be 
well known from basic statistics. 

For a random variable X we denote its mean or expected value by lEX or IE(X). The 
covariance between two random variables X and Y Cov(X, Y) is given by 

Cov(X, Y) = IE ((X - IEX)(Y - lEY)) . 

In particular, the variance of X is 

Var(X) = Cov(X,X) = IE ((X _IEX)2). 

A time series is a collection of random variables {X.}tEZi: indexed by the integer num­
bers 'lZ = { ... ,-2,-1,O, 1,2, ... }. That we index by both negative and positive numbers 
has no practical implications, since any sample we may consider is finite and usually 
indexed only by positive numbers. The reason, however, is merely mathematical conve­
nIence. 

There exists actually various kinds of stationarity for time series. One has been im­
ported from probability theory is called strict stationarity, and means that distributions 
of a series X = {Xt},EZi: and its translated series X h = {Xt+h}tEZi: are the same for all 
hE 'lZ. 

Another stationarity criterion, which we shall use, is called second order stationarity, 
and has been introduced in the introduction. The reason for the term 'second order' is 
that the criterion is based on only the first two moments of the distribution, namely the 
expectation (mean) and the variance/covariance. 
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Second order stationarity and strict stationarity are equivalent whenever the time 
series under consideration are Guassian, that is any sub-vector (X,,, X,,, X,,, ... , X'm) of 
time series values has a multivariate normal distribution. This implies for example that 
all elements in the time series X, are normally distributed, and any linear combination of 
terms from the series as well. 

1.3 Stationary Time Series in practice: some data 
sets 

700 r------r-----,------~----~------r_----_r----_,------, 
"airpass· -

600 
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400 
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100 ~~ __ -L ____ ~ ______ ~ ____ -i ______ ~ ____ -L ______ ~ ____ ~ 

o 20 40 60 80 100 120 140 160 

Figure 1: Airpass data 

Since stationarity is a condition under which we can perform a statistical analysis it is 
crucial that we learn how to distinguish stationarity from non-stationarity. There exists 
in the literature no test for stationarity, that can compete with such basic tools as visual 
inspection of the time series and its auto-correlation function. 

There exists mainly two kinds of viaolation to stationarity. The first is the presence 
of a trend, while the other is the presence of a certain kind of periodicities, often called 
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seasons or seasonality. 
We will consider some examples of times series that have occurred in practice. 
The Airpass data set (see Figure 1) shows international airline passenger totals in 

thousends from January 1949 to December 1960. The data set shows various important 
features. First of all it cannot be stationary since there is an increasing trend. Further­
more, cycles or periods of length 12 is present, and finally the sizes/hights of the cycles 
increases with increasing time. 

All the three features makes it non-stationary. The periods means that e.g. january 
and february data are not correlated in the same way as november and december (in the 
first case there is an increase and in the latter a decrease) . However, if we consider only 
janauries to februaries through the whole period we may find the correlations of quite 
similar nature. 

9000 , 
· chocolate ' -

8000 

7000 r 

6000 

5000 

4000 

3000 

\ 

2000 

1000 
0 50 100 150 200 250 300 350 400 

Figure 2: Chocolate data 

The increase in the hights of the periods makes the time series behave wilder and 
wilder as time goes, and this is clearly a viaolation to the stationarity idea that variations 
do not depend on time. Therefore it is desireable to transform the data in such a way 
that we equalize the hights of the periods. 
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Thirdly, the increasing trend of the data makes them clearly non- stationary, since this 
implies that the means of the random variables through the years are increasing as well. 

The chocolate data (Figure 2) shows a clearly non- stationary behavior (why?), and it 
will be the first task of an analysis to remove trends, cyclic behavior and equalize the size 
of the periodicities. The periodicities do not show too clearly an increasing or decreasing 
trend, so in this case it will be a matter of trial and error with Box-Cox transformations 
(see section 1.4) to stabilize the sizes of these cycles. 

14000 r------,-----,r-----,------.------,------r------r-----, 
-elec· -

12000 

10000 
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4000 

2000 
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Figure 3: Electricity data 

Also the overall increasing trend is not too clear, but a linear trend does not show 
succesful one might try a polynomial of order 3,4 or 5 to get the trend under control. 

The cycles, however, seem to be well behaved and should not cause any trouble in 
removing. 

The electricity data are in some senses similar to the airpass data, only that the overall 
increase looks quadratic rather than linear, at least at the beginning of the data set. 
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Figure 4: Imports data 

This rather erratic time series has an overall increasing trend, but it is yet not clear 
how transform this series into an stationary one, if at all possible. A solution may be to 
treat is as a non-stationary ARIMA model, which we shall return to later in these notes. 

1.4 Box-Cox transformations 

The Box-Cox transformation can be characterized as a preliminary transformation. That 
is, the Box-Cox transformation should be applied before any serious transformations/ analysis 
starts, and is usually the first thing to do if necessary. 

The Box- Cox transformation is as follows. If Xl, .•• , X N is our time series data, then 
the Box- Cox transformed datas are given by 

{ 

xA_l 

Yi = />'(Xi) = T' 
log(xi), 

11 
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This transformation is useful w)1en the data shows ali increasing ' or decreasing trend 
of variability. For example, if the standard deviation of the X;'s increases linearly for 
increasing i's, then the logarithmic transformation will make the variability constant. 

It is really a matter of trial and error to finding the right Box- Cox transformation in 
special cases of application, but the methods applies whenever the data presents a trend, 
that is an increase or decrease, in the variability over time. 

The Box-Cox transformation is only a special case of a more general theory of variance 
stabilizing methods. In general, if the variance of X, is a 2(t), then one should apply the 
function to the original data given by 

f" c 
f(y) = Jo Ja2(t) dt, 

where c is an arbitrary constant. Let us see what this means in the Box-Cox case. If 
f(y) = log(y) then we obviously have that 

log(y) = f Pwdt, 
o a2 ( t) 

which then gives (differentiate both sides with respect to y) that 

a(t) = ct. 

In case of f(y) = "\:', ). # 0, we have the equation 

y A - 1 la" c = r::2{;\ dt , 
). 0 Va2(t) 

which in a similar way gives that 
a(t) = ctl -

A
. 

Thus we note the following: >. = 0 corresponds to a linear increase in the standard 
deviation, ). E (0, 1J to a concave increase, '). E (-00,0) to a convex increase, ). E (1, 2J to 
a slow decrease and), E (2,00) to a fast ploynomial decrease. 

Obviously we can come up with much more sophisticated choises of f , but the Box-Cox 
has become standard in time series literature, and has proved a good flexibi lity compared 
to its simplicity. 

1.5 Classical trend removal techniques 

The general model for a time series that has a certain trend m" say, and a seasonal 
component s, is given by 

X, = Yt + m, + s" 
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where Yi is a stationary time series. The point is then to remove the trend mt and the 
seasonality St from our originally data X t such that we are left with a stationary series 
Yi. 

If there were no seasonality present we have the model: 

X t = Yi +m,. 

Assume without loss of generality that Yi has zero mean. The mean can always be put 
into the trend term if necessary. Attempts has been made in the literature to consider mt 
as a member of a parametric family of functions, e.g. 

for some fixed n. For n = 1 we have a linear trend. A method to estimate the coefficients 
ao, a" ... , an would be to minimize 

with respect to ao, a" ... , an using a least squares method . Then subtracting the estimated 

from X, should yield a stationary sequence {Yi}. 
The method above can be considered as a parametric estimation of m"~ We could also 

choose to use a non-parametric method, using only the data themselves to estimate m"~ 
For example one could choose to smooth the data using a moving average procedure like 

1 q 

mt = 2 + 1 .L Xt+i, 
q . '=-q 

for some choice of q. When is this estimate good? Our data are given by the model 

X t = Yi + mt 

so 
1 q 1 q 1 q 

2 + 1 .L Xt+i = 2 + 1 .L YHi + 2 + 1 .L mHi' 
q '=-q q '=-q q '=-q 

Thus if e.g. mt is assumed to be constant, linear or symmetrical over [t - q, t + q] then the 
first sum equals mt approximately, since the average of the 'noise' terms can be assumed 
to be approximately zero due to the law of large numbers. 
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Main advantage of the parametric method is that we are provided with a function that 
i~ known beyond the observed time scale, so that prediccion does not become a problem. 
The main disadvantage is that it only provide us with little flexibility in the number of 
possible trends, since we have to keep the number of parameters fairly low for ordinary 
applications (less than 3 e.g.). 

The main advantage of the non-parametric method is that it will almost surely remove 
the trend within the oberserved time span, but it does not provide us with any estimate or 
information obout the possible trend in the future. Thus the method is more descriptive 
than of possible use for the sake of preclictions. 

The moving average smoothing is by the way a special case of filtering a time series: 
we say that m, has been obtained using a linear filter to x,. We shall return to this subject 
in more detail later. 

For the general case where both seasonal components and trend is present we can do 
a similar thing. If the period is d, say, then we can smooth our data by applying a linear 
filter as above. If the d is an 'unequal number, d = 2q + 1, then we estimate the trend as 

1 q 

m, = -;IL XH'· 
'::-q 

If d = 2q is requa~ then we have a slight problem, because in the sum r;~=-q XH' there 
always appear an unequal number of terms, and we only want to smooth over the period 
d. This problem is over corned by only adding half weight to the end terms in the sum, 
l.e . 

, 1 (1 1 ) m, = -;I '2 x ,-q + X'-q+l + ". + X'+q-l + '2 x ,+q . 

Once the trend has been estimated, we estimate the seasonal effect by removing the 
trend from the original series. The seasonality effect is of course the same for all cycles, 
by definition, and hence we can estimate it by an average 

where j is such that q < k + jd ~ n - q, and [aJ denotes the integer part of a. Now 
this average does not necessarily sum to zero (a desirable property) , so we will use the 
estimate 

1 d 
5k = Wk - - LWk. 

d .=1 

Extend 5k to all k by Sk = Sk-d for k > d. Now remove the seasons from the data, to 
obtain deseasonlized data 

d, = x, - 5, 
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and reestimate the trend of the data, either by smoothing/moving average or by a poly­
nomial fit. Finally remove this trend from the data to obtain the stationary series. 

1.6 Differencing 

The classical approach to trend removal and deseasonalization may seem reasonable in 
practice, though it may look rather ad hoc orientated from a scientific point of view. 
Introducing differencing as an alternative tool we will be able to remove both seasonality 
and any polynomial trend at any degree by one single method. Define the backward shift 
operator B by 

BX, = X'-I' 

We define powers of B in the usual way 

. ( . I ) BJ = B BJ- X, = ... = X'-i' 

Define the difference operator by 
v = 1 - B. 

Then V X, = X, - X'-I' Powers are defined as above Vi = (1 - B)i (not to confuse with 
1 - Bi). 

With this difference operator at hand we will be able to remove seasonality as well as 
polynomial trends. Indeed consider the general model 

X, = Y, + m, + s" 

where s, is a seasonality component with period d, say. Let us start with considering a 
differencing of lag d. Due to seasonality we obviously have that V dS, = 0, where V d is 
the lag-d difference operator, V d = 1 - Bd, V dX, = X, - X'_d. Thus we have 

In this differenced model the trend is now m, - mt_d and the (stationary!) noise term is 
Y, - Y,-d. Moreover the noise term has mean zero. Thus the situation now is equivalent 
with a model of the type 

X, = Y, + m, 

where Y, is stationary with mean zero and m, a trend. Assume that this trend is polyno­
mial (if the original trend above is polynomial, then so is its differenced (deseasonlized) 
trend), so we may write 
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Then apply \1 k to this polynomial to get 

Thus \1k fully removes the polynomial trend of order k, and leaves back a constant term, 
which only adds to the mean. Then we have that 

where \1k y, is stationary. Thus X, is stationary. 
In particular, \1 removes linear trends, \12 quadratic terms and \13 cubic trends. For 

more sophisticated trend removals, like logarithmic or exponential t rends, we would have 
expand these functions into Taylor series and apply an approximating polynomial of not 
too high degree as a trend. If this does not seem feasible we must recommend the calssical 
approach for trend removal, since it is not desireable to use an exessive number differencing 
steps, because each step decreases the number of data points availabe for our analysis. 

16 



Chapter 2 

ARMA processes 

ARMA processes is the most famous class of time series in the literature, and that is 
mainly due to two reasons. Firstly they are mathematically relatively easy to deal with, 
and secondly it can be shown that any stationary time series we may be confronted with 
in practice can be approximated arbitrarily close by an ARMA modeL 

A generalization of ARMA processes, the so called generalized linear processes, will 
also be presented. The general linear processes will show that any ARMA process, under 
mild regularity conditions, can be represented as an infinite MA process. This fact will 
be used in model selection of ARMA processes, and is therefore as such an important 
statement to notice. 

2.1 The simplest model: i.i.d. 

The notation i.i.d. means independent, identically distributed . . This is a standard as­
sumption in other parts of statistical analysis, which does not appeal too much to time 
series analysis. Everything independent would simply imply that any future predictor 
would have to be generated as a random number independently of the past. This means 
that our observations only serve to settle the distributional properties, but any forecast 
would be independent as such of our observations. 

In spite of this, the i.i.d. assumption is still an important one in time series analysis. 
In moving average models we are dealing with i.i.d.'s and in error terms as welL 

Let X" t E 'lZ be i.i.d. with variance (72 Then the covariance function ,(h) is given 
by 

{ 

(72 if h = 0 
,(h) = Cov(Xt X t+h ) = 0 th . o erWlse 

(2.1) 

The terminology in time series states that any time series having auto-covariance 
function (2.1) is called a white noise. The reason for this apparently strange name will be 
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clear later from spectral analysis where we see that the socalled spectrum of a white noise 
process is constant . This means that all frequencies are present with the same intensity, 
and from physics it is known that this would imply wh.ite light. 

2.2 AR(l) processes 

Auto- regressive processes of first order, AR(I), are time series {X.} that have the property 

X t = aXt_ 1 + ft, 

where {ft} is a white noise process. In this model the value of the process at time t, X" is 
obtained through a simple linear regression on its own past values Xt-I. Thus a plays the 
role of the slope and the white noise plays the role of the error term. This is the reason 
for the name 'auto-regressive'. 

The auto':"regressive property implies that we can write 

X t aXt _ 1 + ft 

= ft + a (aXt - z + ft-1) 

ft + aft_1 + a2 (aXt _ 2 + ft-z) 

= 

If we make the assumption that Xo = 0, and that the white noise process has mean Ji, 
and variance ~;, then 

IE (Xt ) = Ji, (1 + a + a2 + ... + at - 1 ) = { Ji, 11-=-: ~f a 'I- 1 
tJi, If a = 1 

In this case we can see that X t is not stationary, since its mean depends on t. This means 
that we cannot have a stationary process where we impose the condition Xo = 0, or any 
other fixed value for that sake. 

The reason for we did not obtain a stationary time series in this case is not only 
because we restricted Xo to 0, but merely because we constructed the whole process 
as depedent on this particular value. The key point is that stationarity is a feature of 
processes that have been running for a very long time. That is why we have defined Xt for 
all tEll, and we will be thinking of the process as comming from infinitely far, namely 
from t == -00. When the process then hits our usual region for observation t = 0,1, .. . , N, 
then the process has developed into stationary mode. 

In the case where Xo = 0 we can compensate for this assumption by letting t -+ 00 . 

We see that if lal < 1 then IEXt has a limit as t -+ 00, namely Ji ,/(1 - a). 
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For h ::::: 0 we have that the covariance function is given by 

Cov(X" XHh ) = Cov (~ait'_i' '~l ait'+h_i) 

= a: (ah + ah+2 + ... + ah+2('-1)) 

= f. ~ I 
{ 

a2ah I-a" if lal...J. 1 

a;t if lal = 1. 

Again we see the dependence on t, and again we see that a limit exists for lal < 1 and is 
given by 

ah 

a::-l-~2' -a 

This means that the series has an asymptotic stationary limit if lal < 1. Thus we see that 
there exists a stationary AR(l) series (namely the limit of X, above), and that this series 
has auto-covariance function 

a 1hl 
,(h)=a; 2' 

1 - a 

In particular, the variance of the process is 

2 () 2 1 ax = var X, = a, 2 
l-a 

Thus the auto-correlation function is given by 

p(h) = a 1hl . 

If lal = 1 we see that there do not exists a limit. If lal > 1 the expression for the covariance 
diverges as well as t --+ 00. This could in principle be overcomed by the following trick. 

The AR(l) model is given by the regression 

which can also be written 
1 1 

X'_l = -X, - -t" 
a a 

and in this setting the argument above could be carried through, but instead of repre­
senting X, as a sum of white noise presently and previously recorded we would obtain a 
sum of future white noise values. This property is not desirable in time series analysis, 
since we have quite a clear definition of the time direction. 

The process AR(l) with lal < 1 is called causal or future independent. Non-causal 
processes shall hence not be considered in what follows. 
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Exercises 
(1) Explore the graphs of the auto-correlation function of an AR(l) process for respec­
tively positive and negative a, lal < 1. Which connection is there between the graph of 
the auto-correlation function and the actual behaviour of the time-series itself? (hint: 
look at a -> -1.) 

2.3 AR(2) processes 

Auto-regressive processes of order two is the natural extension of the first-order model, 
to a linear regression on the previous two values. To be precise, an auto-regressive model 
of second order, AR(2) , satisfies 

(2.2) 

where {E.} is a white noise, which we without loss of generality can assume to have zero 
mean and variance 17:. 

Using the backward shift operator B, we can also write (2.2) as 

Factorizing the polynomial using its roots rl, rz , 

1 + alB + azBz = (B - rl)(B - rz) 
= (rl - B)(rz - B) 

1 1 
T,Tz(l- -B)(I- -B) 

rl r2 
1 1 

= (1 - -B)(l - -B) 
rl TZ 

(1 - IlIB)(l - IlzB), 

since rlrZ = 1 (put B = 0 in the polynomial and evaluate the factorization), and where 
III = 1/rl and Ilz = 1/rz. Note that since TI is a root of the polynomial 1 + alZ + azzz 

then 1 + alrl + azrf = 0, and dividing by rf we get Ilr + alill + az = 0, i.e. III is a root 
in the polynomial zZ + alz + az. Similarly, Ilz is a root in the polynomial Z2 + alz + az. 

Using this factorization we get that 

x, = 
(1 - IlIB)(l - IlzB) 

, _,,1 
3 +-''' l)~·-· 

== )'t, + 1'" 

- III ~ Ilz C !~IB 1 !:zB) E, 
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00 11.,+1 11.'+1 
'" rl - r2 = L.J ft-s· 
,=0 PI - f'2 

To obtain the general solution to (2.2) we need to add to the expression above the solution 
to the equation 

x, + a,X,_l + a2X'_2 = o. 
This equation can be shown to have a solution on the form 

so the general solution to (2.2) is hence 

For this expression to have a limit, as t -> 00, we need at least If'll < 1 and 1f'21 < 1 
for the first term to vanish . But what about the second term? Under the condition that 
If'll < 1 and Ilt21 < 1 we have that the variance of the second term is 

f (p~+1 - 1t;+1) 2 0"; 
,=0 f'1 - 1t2 

< 00. 

Thus the conditions Iltll < 1 and 1f'21 < 1 is enough to ensure asymptotic stationarity, 
and hence for a stationary AR(2) to exists. 

We will not derive the auto-covariance function for this case, since the calculations 
will become rather tedious, and not provide any further intrisic inside into the structure 
of AR(2) processes. 

What is interesting, however, is to consider the roots f'1 and f'2. They can both be 
complex valued or real valued, depending on whether the discriminat D of the second 
order equation Z2 + alz + a2 = 0 is negative or positive. In the former case the condition 
amounts to 

while in the latter we have 
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lp case of complex roots, we have that D < 0, and hence 

Jar - 4a2 = iJ4a2 - ai. 

The solutions are respectively 

a, Jai - 4a2 
iLl = -2 + 2 ' 

Then using (2.3) we obtain 

liLl12 = iL,[h = a2, liL212 = iL2/i2 = a2· 

This means that 

(2.3) 

a, 

L\ 

(note: a2 2: 0 is ensured by D < 0.) J hen the stationarity condition becomes equivalent 
to a2 < IJ The same results hold for D = 0, where we have two equal roots. 

Let us consider the case of (two unequal) real roots . Since t_he~, are real they 
are the intersection between the graph of fez) = Z2 + a,z + a2 with the first axis. The 
condition liLII < 1, liL21 < 1 then amounts to the insecting points to lie between -1 and 
1. The minimum is attained for -a,f2 and a sufficient condition to ensure the points to 
lie between -1 and 1 is hence , U :::. 0 w.· .. ' . 

a, 
-1 < -- < 1 f(l) > 0,j(-1) > 0, 

_ 0 
o~ - -

4 

o 

- 2 - , 

This is then equivalent to 
\f"'\= \1"\­

" \ ~ \ 
la,l :::; 2, 1 + a, + a2 2: 0, 1 - a, + a2 2: O. 

Noting that ~ all :::; 2 ==} a2:::; 1 'we have that for stationarity to occur in the limit, 
(a" a2) must"lie in the triangle defir:ed by ..... ' ~: '~ 

a2 :::; 1, a, + a2 :::: -1, a, - a2 :::; 1. 'i ) " 
In general, one can show that the variance of the AR(2) process is given by 

and the auto-correlation function, 
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This auto-correlation function behaves very differently for the cases of real or complex 
solutions. 

Exercises 
(1) Using the calculations above, show that the roots fl.l and fl.2 in the complex case 
satisfies the following: 
(i) fl.l and fl.2 are complex conjugate, and can be written as 

fl.l = yli2e;8, fl.2 = yli2e-;o, 

(ii) The parameter 0 is given by 

al 
cos(O) = - 2y1i2' 

(iii) The auto-correlation function is given by 

p( h) = a~/2 (sin (( h + 1 )0) - a2 sin (( h - 1 )0)) . 
(1 + a2) sin 0 

(2) Explore the different behavior of p(h) for different values of fl.l and fl.2 (distinguishing 
particularly between the real and the complex cases) plotting p( h) in a computer program. 

(3) For complex values of fl.l and fl.2 we see some periodic behaviour of p(h), that is, 
however, damping out as h --+ 00. Explain what effect this periodic behviour will have 
on the actual data. (hint: let a2 --+ 1, and show that p(h) --+ cos Oh. Thus correlation +1 
occur at multiples of 27r/O. Conclude from this, that if p(h) has an exact cyclic behavior, 
then so has X, itself. Conclude the same for the damped periodic behavioL) 

2.4 AR(p) and MA(p) processes 

AR(p) processes are the natural generalization of AR(2) and AR(l) processes. A time 
series {X,} is called a auto-regressive process of order p if it satisfies 

where {E,} is a white noise process, and al, ... , ap are constants. Introducing the polyno­
mial a(z) = 1 + alZ + ... + apzP we can in short form write 

a(B)X, = E,. 
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The auto-covariance function is less straightforward to calculate than for AR(l) and 
AR(2) processes, and we will omit the details. 

Now we introduce another important concept in the model building of time series, the 
movmg average processes. A moving average process of order p, {X.}, is defined by 

where bo, bl , .... , bp are constants and {€.} is a white noise. Defining (3(z) = bo + bIz + ... + 
bpzP we can write 

X, = (3(B)€,. 

One of the main differences between auto-regressive processes and moving average pro­
ceSses is the following. In the auto-regressive case we have that X t is a regression on its 
own past values plus a random error ft. \.:E.hus €t is going to influate on all future values 
.Xt+I' X t+2 , •• . etc .. But in the moving average case, the influence of €t is no longer present 
after p future step~ This is the same as to say that the auto-correlation function for 
MA(p) processes will be zero after lag p, i.e. 

p(h) = 0 for Ihl > p. 

The basic 'caracteristics, mean, variance and auto-correlation function are easy to calcu­
late moving average processes, since they are composed of sums of independent random 
variables. 

Starting with the variance, it is easy to see that 

p 

a} = var(X,) = u; L, b;, 
i::=O 

, .' 
where u; = var(€,). For h :::: 0 the covariance function is cleal:\y given by 

Moreover the auto-correlation function satisfies 

O:C;h:C;p 
otherwise 

if O:C; h :c; p 
otherwise 

For both the auto-covariance function and auto-correlation function is should be noted 
that they are symmetrical, so for h < 0 we e.g. have that p(h) = p( -h). 
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2.5 ARMA(p,q) processes 

The class of ARMA processes, which are combined auto-regressive and moving average 
processes, constitute a flexible class of processes with the nice feature, that any stationary 
processes with liIIln_oo "I(h) = 0 can be approximated arbitrarily close by an ARMA(p,q) 
processes. To this end, however, we may need p and q to be quite large, and that is in 
fact not desirable. 

The more variables we include, the more we exhaust our data set, and the less data 
per parameter we are provided with. This means, as the number of variables grow, also 
the precision of the estimates become less precise. Later, in the section on estimation of 
ARMA processes, we shall present an approach by Akaike on automatic model selection. 
In his approach there is put a cost on each additional variable, and the estimation then 
becomes a matter of minimizing the cost: the model that is less costly is the preferred 
one. 

The generality of the ARMA model is closely connected to that of rational functions (a 
rational function is a function that can be written on the form p(x)/q(x), where p(x) and 
q(x) are polynomials). Any continuous function can be approximated arbitrarily close by 
rational functions. 

Now turning to ARMA processes, an ARMA(p,q) process is a time series {X,} that 
satisfies 

X t + alXt- 1 + a2Xt-2 + ... + apXt_p = bOE, + blE'-1 + ... + bpE,_p (2.4) 

Using the polynomial introduced in the previous section, we can write the condition (2.4) 
on the closed form 

a(B)X, = {3(B)t.. 

The intuitive meaning of this class of processes is that the regression of X, on its past 
values does not only depend on the sampling error of X" E" but as well on the sampling 
errors on the q previous variables. Here q can both be larger or smaller than p. 

/' 

If p is larger then q the process is easy to interpret, as we consider a regression on 
previous values, where some of the variables error terms are taken into account. If on the 
other hand q is larger than p is may be difficult to give any justifucation for such a model 
other than it fits the data well. 

2.6 The partial auto-correlation function 

For a time series X I ,X2, ... ,X" .. . , consider for a given k the regression of Xk+I and Xl 
on their intermediate values X 2 , ... , X k , i.e. the model 
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In these linear regressions we then estimate (least squares) the parameters, obtaining the 
corresponding estimates ai, "" ak, ~l> "" ~k' Then form the residuals 

R, = X, - (a, + a2X2 + .. , + akXk) 

Rk+l - X kH - (~, + ~2X2 + , .. + ~kXk) , 

The partial auto-correlation function Q(h) is then defined as follows : 

Q(l) = corr(X2,X1 ) 

Q(k) = corr(Rk+I , Rd, 

So what is the interpretation of the partial auto- correlation function? It is somehow the 
correlation between X, and X k+1 after taking into account the intermediate steps, By 
regressing X, on X 2, .. " X k we try to express X, in terms of X 2, .. " X k, Similarly we try 
to express X k+l in terms of X 2, .. " X k, The deviation from this exact linear relationship, 
the residuals in other words, then tells us how closely related are X, and Xk+I' 

For an AR(p) process it is clear that Q(h) = 0 for h > p, This follows from the fact that 
in the AR(p) process X p+2 = Co +CpH X pH + .. ,+C2X2+Ep+2 , so the residual is Ep+2, which is 
independent of Xl, .. " X pH , and hence also independent of X, -d, -d2X 2 - .. , -dpHXpH , 
which immediately implies that Q(h) = 0 for h > p, 

This is not the case for MA( q) processes, For example the MA(l) process has partial 
auto-correlation function 

(-&)h(1- b2
) 

Q(h) = 1 _ b2(k+l) , 

which will not vanish after a certain point , 
How to calculate the partial auto-correlation functions in practice for concrete ARMA 

processes involves the calculations of the auto-correlations as well, and we will therefore 
omit any further excursions in that direction, In practice, however, it provides valuable 
information when checking if a model is an AR process, 

2.7 Generalized linear processes 

By a generalized linear process we understand a time series {X,} that can be represented 
as 

00 

X, = L 9u E,-u, 
u=o 
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where the 9u'S are constants such that 2::;:0;0 9~ < 00 and {E.} is a white noise process. It 
follows directly from the definition that we may consider the generalized linear process as 
an infinite moving average process, MA( 00). 

The variance of this process is readily calculated to be 

a2 
X - var(Xt) 

var (~9UEt-U) 
00 
Lg~O"~ 
u=o 

= (~9~) a:, 

where a~ denotes the variance of the white noise process, a; = var( Et). Thus the gener­
alized linear process has finite variance. 

Put 9u = 0 for u < o. Then we can write X, = 2::;:0;-00 9uEt-u. Then the auto­
covariance function is 

,(h) - Cov(X" X t+h ) 

- Cov(X" X,_h) 

= COy Cj;oo 9uEt-u, uj;oo 9 uEt-h-U) 
00 

= a: L 9u9u-h· 
1£::;-00 

The convergence of the series (2.5) is ensured by 

ICOV(Xt,X,_h)I:'O JvarXtJvarXt - h = a~ < 00 . 

The auto-correlation function is given by 

Thus the condition 2::;:0;- 00 9~ < 00 ensures second order stationarity as well. 
Consider the series 00 

G(z) = L9uZu. 
1£=0 
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This series (which is defined in terms of the complex variable z) exists (converges) if e.g. 

00 

L IgullzlU < 00. 
u=o 

This means for lzl ::; 1 the condition 2::::;'1 19u1 < 00 is sufficient. Imposing this (stronger) 
condition on the series gu, we then have that G(z) exists for z ::; l. 

The existence of G(z) for lzl ::; 1 is the same as to say that G(z) is analytic inside and 
on the unit cirle. The importance of the function G( z) is from the relationship 

x, = G(B)t,. 

If we moreover assume that G-1 (z) < 00 for lzl ::; 1 then G-1(z) is also analytic inside 
and on the unit circle, and hence it allows for a power series expansion 

00 

G-1 (z) = L huzU, 
u=o 

where 2::::;'0 lhul < 00. Thus we can write the infinite moving average process as an infinite 
order auto-regressive process as well, namely 

Looking at the ARMA process 

a(B)X, = (3(B)t" 

the condition for X, to be a general linear process is that G(z) = (3(z)/a(z) is analytic 
inside and on the unit cirle, and since (3(z) is a polynomial and hence analytical, the 
condition is only imposed on a(z), namely that a(zt1 analytic inside and on the unit 
circle, which again equivalent to a(z) does not have any roots inside or on the unit circle. 

On the other hand, by a symmetric argument, the condition for the ARMA pq)cess 
being expressible as an (possibly infinite) auto-regressive model, is that (3(z) does not 
have any roots on or inside the unit cirle. 

If a process can be expressed as a generalized linear model it is called causal (or future 
independent), and if can be expressed as an infinite order auto-regressive model, it is 
called invertible. 

It is the simple form of the auto- covariance function (2.5) that forms the basis for the 
calculations of auto-covariance functions of ARMA processes in practice. All we need to 
do is to represent the (causal) ARMA model as a generalized linear model (finding the 
gu's) and calculate (2.5). 
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Consider the usual ARMA(p,q) model, 

a(B)Xt = (3(B}t.. 

Assuming the model is causal, 

G(z) = (3(z) 
a(z) 

is analytical for Izl < 1, and hence (by definition of analytic) IS has a power senes 
expansIOn 

u=o 
The ~,:s are necessarily the coefficients 9. we are looking for, i.e. 9. = ~ •. So in principle 
we could differenciate G(z) u times and evaluate at 0 to find 9u, but there exists in fact 
easier methods. 

One of them is to rewrite G(z) = (3(z)/a(z) as G(z)a(z) = (3(z) and calculate the 
coefficient of zj directly from this expression. Take for example the causal ARMA(2,1) 
model, 

1 
(1 - B + ;jB2)X, = (1 + B)t,. 

Then a(z) = 1 - z + ~Z2 and (3(z) = (1 + z) . Then 

G(z)a(z) = 

00 00 00 1 
= L9uZu + L(-1)9.Z"+' + L 49.z·+2, 

u=o u=o u=o 

and then equate from 

00 00 001 
L 9u Zu + L( -1)9.Zu+1 + L 49"z,,+2 = 1 + z. 
u=o u=o u=o 

On the left hand side (LHS) there is only on coefficient to zO namely 90 in the first sum. 
Comparing this to the RHS we get 90 = 1. There are two coefficients to z, from the first 
sum on the RHS we get 9, (for u = 1) and from the second sum (-1)90 (for u = 0). 
Comparing to the RHS we have the equation 

9, - 90 = 1, 

and since 90 = 1 then 9, = 2. For coefficients to z2 we get the equation 

1 
92 - 91 + 490 = 0, 
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which gives 92 = ~. In general, for u 2': 2, we have that 

1 
9u - 9.-1 + 49u-2 = 0 

the solution of which is 
9. = (a + nb)2-n. 

The constants are then verified to be a = 1 and b = 1 using 90 = 1 and 91 = 2. 
This method is cumbersome in practice, but still bar far easier than differentation. 

, , 
, . 
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Chapter 3 

Estimation and Order Selection 

3.1 Introduction 

In this chapter we introduce the most important concepts from estimation theory and 
order selection methods for ARMA processes. Though we omit most of the proofs it 
is the intention that the exposition should provide a good feeling for the practical and 
conceptional problems involved in any data study of such series. 

Modern estimation procedures and order selection techniques are presented, and par­
ticular details in the analysis phase is highlighted as well. 

3.2 Estimation of mean. 

Consider a (second order) stationary time series, {X.}, t E 'll, and let 

IE(Xt ) - f1 

var(Xt ) = (J2 

Cov(Xt,Xt+h) = ,(h) = (J2p(h). 

If we are confronted with a data set x" ... , XN of data from {X,}, in general all parameters 
are unknown including the form of the auto-covariance function. All these parameters 
have to be estimated from data. 

Standard statistical procedures, like the maximum likelihood approach, require full 
knowledge about the distribution of (X" ... , X N ) in order to maximize the likelihood 
function over the data. 

In time series analysis we only assume second order stationarity, which in fact only 
put restrictions on the first two moments. This means that we do not have any knowledge 
about the distributions of X" .. . , XN , and even worse they are allowed to be differently 
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qistributed. Another feature that complicates the matter is the assumption of correla­
tion between variables. Indeed in the likelihood approach it is standard to assume i.i.d. 
variables, which simplifies the likelihood function considerably. 

After these comments the reader should understand the reason for why it has not been 
custom to apply more established statistical procedures to time series, but instead with 
some intuitive approaches, which some critics instead may call ad hoc. These approaches 
still play an important role though maximum likelihood estimation has become standard 
even in cases where the data show a clear deviation from normality. 

Using the fact that all Xi have the same mean, {l, suggests that the sample mean XN , 

should be an useful estimator of the mean, 

_ 1 N 

X N = - :LXi. 
N i~l 

Note that any estimator is a random variable (hence written with capital letters) per 
definition, and we can therefore explore their distributional and sampling properties in 
terms of the original variables Xl, .. . , XN . When estimating the sample mean, however, 
we will write IN as the corresponding realization of XN . 

The sample mean is an unbiased estimator of {l , since 

_ (1 N ) 1 N 
lEXN = lE N :LXi = N :LlEXi = {l . 

t;;;1 1=1 

The variance of X is 
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r 
(72 N-l Iii 

= - L: (1- -)p(i). 
N i=-(N-l) N 

Taking absolut values we obtain I 
INvar(XN) 1 s: (72 L: Ip(hll · 

JhJ<N 

If p(h) --+ 0 as h --+ 00 we have 

1 
N L: Ip(h)l-t 0 

JhJ<N 

as N -t 00. To see this, let m < n and write 

1 - L: Ip(hll 
n JhJ<n 

~ L: Ip(h)1 + ~ L: Ip(h)1 
n JhJ<m n m:>JhJ<n 
1 n-m 

< - L: Ip(h)1 + 2 max{lp(m)l, Ip(m + 1)1, ... , Ip(n - Ill} 
nJ~<m n 

- ~ L: Ip(h)1 + 2 (1 -~) max{lp(m)l, Ip(m + 1)1, ... , Ip(n - Ill} 
nJ~<m n 

-t 2max{lp(mll,lp(m+l)I, .. } 

as n -t 00. Then for all m we have that 

lim ~ L: Ip(h)1 s: 2max{lp(mll, Ip(m + 1)1, ... } 
n_oo n jhl<n 

and letting m -t 00 then gives that 

lim ~ L: Ip(h)1 = o. 
n_oo n 

JhJ<n 

But then we have proved that as n -t 00, 

var(Xn) -t 0, 

if p( h) -t 0 as h --+ 00. Moreover, if LI:'=-oo h( h) I < 00 then 

Ji..~ L: (1 - 01) ,(h) 
JhJ<n n 

00 

= L: ,(h). 
h=-oo 
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The condition Lh=-oo h( h) I < 00 is satisfied by all ARMA processes . So for such processes 
with II = Lh=-oo "Y( h) -lOwe have that 

Xn ~ N(J1-,lIln). (3.1) 

If the data are normally distributed, we have the exact property 

(3.2) 

. These results are very useful for finding large-sample confidence or approximate confidence 
intervals for J1-. 

Example 3.2.1 100 values where simulated of an ARMA(2,2) process with mean 0 and 
variance 1. The emperical mean was calculated to be x = 0.059582. From the estimated 
auto-covariance function we calculated 

40 

L 7(h) = 4.929905. 
h=-40 

Note we only used 40 values from the auto-covariance function. The reason is simply 
that the time series package applied, PEST, does not provide more data than that, and 
moreover that we can never use the theoretical full amount 100 since the estimate will be 
very poor for larger lags; we can only estimate the auto-correlation function up to about 
lag N 14, where N is the size of the data set. In practice this does not matter much since 
the auto-covariances have exponential tails, and hence t.he information we loose will be 
insignificant. 

Then the 95 % confidence interval for J1- based on the asymptotic normality (3 .1) is 
given by 

x - 1.96} II In ::; J1- ::; x + 1.96} II In 

which numerically is equivalent to 

-0.3756 ::; J1- ::; 0.4948. 

If we actually knew that the ARMA(2,2) series was Gaussian (has a normal distribution) 
then we can apply the exact formula (3.2) . In this case we have that 

f (1- ~h(h) = 5.463340 
h=-40 n 
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which results in the confidence interval 

-0.3985 ::; I-' ::; 0.5177. 

PEST provide the usual standard deviation of data, which in this case was 1.4977. We 
cannot construct the confidence interval using this standard deviation, since this would 
be the same as to assume independence, and the confidence interval we obtain in this case 
is only 

-0.1803 ::; I-' ::; 0.2994. 

This may seem as a stronger statement than the other two confidence intervals, but 
that this confidence interval is much tighter than the other two simply means that the 
tests at the same levels (e.g. 99 %) are more prawn to reject the hypothesis I-' = 0 
using the independence assumption than using the exact or asymptotic formula under the 
stationarity assumption. 

Note that PEST does not automatically provide confidence intervals for the mean 
using the stationarity assumption. But what we can do is to save the auto-covariances 
in a file, and use a little program (or a calculator!) to calculate the variances above. In 
this example we used FORTRAN programs. In the case of exact variance it looks like: 

OPEN(UNIT=8,FILE='arma22.acf',STATUS='0Id') 
SUM=O 
DO 1=1,40 
READ(8,*) Xl 
X=1.0*T 
T=1-X/100 
SUM=SUM+T*X1 
ENDDO 
V=2*SUM+1.4977*1.4977 
WRITE(*,*) V 
END 

It should be underlined already at this point, that when a statistical analysis is presented 
all estimators should be available together with their confidence intervals, and, if available, 
their exact or asymptotic distributions. A report that does not specify confidence intervals 
for the estimators cannot be trusted in its conclusions. 
Exercise: Simulate some stationary (ARMA) processes in PEST, and calculate confi­
dence intervals for the mean values. Do the same for real data that has been put into 
stationary mode. Use e.g. the data 'elec'. 
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3.3 Estimation of the auto-covariance function 

The estimation theory for auto-covariances and auto-correlations are by far more compli­
cated than for the mean, and it is beyond the scope of these notes to outline any details 
for the distributional properties of the estimates. 

As estimator for the auto-covariance function we will use 
. 1 n-h _ _ 

"t(h) = - 2: (X, - X n)( X'+h - X,,) 0 ~ h ~ n - 1, 
n t=l 

(3.3) 

and for the auto-correlation 

p(h) = ~~~;. (3.4) 

Note that for large h (like h = n - I) (3.3) provides a very poor estimate for the 
auto-covariance function , since it is based on very few values. In practice one should 
not rely on estimates beyond lag N14, where N is the number of data. The experienced 
reader may ask why we don't use 1/(n - h) as normalizing factor in the average instead 
of lin to obtain a 'proper' average. The reason is purely technical, and has to do with 
the sampling properties; it has been claimed to have a smaller quadratic error than the 
other, and it has some desirable properties in terms of matrices (positive definitness). 

We shall not go into further derivations in this section, but merely discuss the impor­
tant results . 

Consider the general linear process (now not necessarily causal) 

j== - oo 

where {f,} are i.i.d's (and not only a white noise process). Fix a lag h, and let W be the 
matrix who's ij element (i,j = 1, ... h) is given by 

00 

Wi; = 2: {p(k + i) + p(k - i) - 2p(i)p(k)} 
k=l 

X {p(k + j) + p(k - j) - 2p(j)p(k)} . 

Then one can show that if lEft < 00 and L~-oo Igj I < 00 then asymptotically, 

p(h) ~ N(p(h),n-1W), 

where 
pel) pel) 
p(2) p(2) 

P(h) = , p(h) = 

p(h) p(h) 
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We can also remove the restriction on the error term, but then we have to impose the 
following extra condition 

00 

L Ijlg} < 00. 
j=-oo 

These conditions are satisfied by any ARMA process, where the white noise process is not 
only uncorrelated but actually independent. In practice this is not a severe restriction, 
and certainly not if we are dealing with Gaussian processes, since we then have equivalence 
between uncorrelatedness and independence. 

Again, in presenting the final report on a time series analysis, it would be professional 
to present the covariance matrix of the auto-correlations. To calculate W in practice we 
simply replace p(k) by p(k). 

If X, is an i.i.d. sequence then W = I (the identity matrix, Wi; = 1 if i = j and 0 
otherwise), and we have that asymptotically 

p(h) ~ N(p, n-1 1). 

This means in particular that 

var(p(h)) ~ ~ 
n 

and hence the 95 % confidence interval for all p( h) 's is 

" 1 96 "1 96 
p(h) - ~ ~ p(h) ~ p(h) + ~. 

. " 
So if we draw the 95 % lines into the graph of p(h), then all points p(h), hoi 0 should be 
between these two lines if X, is i.i.d. Often we will use this fact in selecting models. In 
particular to identify i.i.d. processes. 

3.4 Estimation of parameters in AR(p) processes: 
Yule-Walker equations 

Throughout we will assume that the mean has been subtracted from the process, so that 
we are considering a zero mean AR(p) process on the form 

(3.5) 

where then f, is a white noise process with zero mean. Suppose moreover that the process 
we are considering is causal. Multiply (3.5) with X'_k, k ;::: 0 and obtain the equation 

37 



Take expectation to get 

IE (XtXt- k) + aIlE (Xt-IXt-k) + a2IE (Xt- 2X t-k) + ... + apIE (Xt-pXt- k) 
= IE (€tXt-k) . (3.7) 

We have assumed that the process is causal, so we can write 

and hence for k > 0 

Thus we have the equation 

00 

X t = L9u€t-u 
u::o 

for k = 1, ... , P, which in the literature is known as the Yule-Walker equation. 

(3.8) 

If we want to estimate the coefficients aI, ... , ap we can also make use of the Yule­
Walker equation, replacing ,(h) by its estimate 7(h) and solve for aI , ... ,ap • To this end 
we establish p linear equations as follows: 

Write 

and 

W) + a'7(0) + a27( -1) + ... + apW - p) = 0 
7(2) + a'7(1) + a27(0) + ... + ap1'(2 - p) = 0 
7(3) + a'7(2) + a21'(1) + ... + ap7(3 - p) = 0 

a, 7(1) 
a2 7(2) 

a= ,'Yp= 

( 

7(0) 
rp= 7(1) 

7(P - 1) 

W) 7(2) 
7(0) W) 

7(P- 2) 7(P - 3) 
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Then we can write the p equations on compact form as 

TpiL = -..yp. (3.9) 

The mean has been subtracted, so all we need to estimate now is the variance of the white 
noise process, a;. Using (3.7) with k = 0 gives after taking expectations 

,(0) + al,(1) + ... + ap,p = <7?, 
so we estimate the variance by 

)'(0) + alw) + ... + ap)'(p) = &;, 
or written on compact form 

&? = )'(0) + o"..y. 
The Yule-Walker estimates aI, .. . , ap have the following asymptotic limit: If the white 
noise process is in fact an i.i.d. sequence, then 

n l
/

2 (a - a) =} N(O,a;rl/), 
where =} means convergence in distribution, a = (al, ... , ap )', 0 the vector of zeroes and 
rp = h(i - j)}i,j=I, ... ,p. 

In practice to obtain confidence intervals for the estimates one would replace all pa­
rameters in the distributional limit with its corresponding estimates. 

3.5 Other techniques for estimation of AR processes 

The Yule-walker approach is in fact only one approach among many existing ones, and 
certainly not the most precise one. It is useful , however, because it is simple and fast to 
calculate, and does not impose additional assumptions on the distributions of the time 
senes. 

The following methods are all superior to the Yule-Walker approach, and are listed in 
decreasing order of precision, such that the first one is the most precise method. 

3.5.1 Maximum likelihood method 

This method is only feasible if the white noise process is normally distributed, which in 
turn means that the whole time series itself is normally distributed. To write down the 
covariance matrix of the time series is a complicated matter, and we omit it . All we need 
to mention at this point is that the maximum likelihood estimate can be calculated using 
an iterative procedure, which is slower than the Yule-Walker approach. The program 
PEST, and most other packages, have the option of maximum likelihood, and is greatly 
recommended when the data can be assumed to be normally distributed. This assumption 
should of course be checked. 
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3.5.2 Least squarel? methods , 

If the data show a significant deviation from normality, it is recommendable not to use 
the maximum likelihood approach, but rather a least squares method, or approximate 
least squares method. The least squares method and the maximum likelihood method are 
equivalent when the data are Gaussian. 

3.5.3 Durbin-Levinson algorithm 

The Durbin-Levinson algorithm is a convenient way of estimating parameters in autore­
gressive processes, and is used by PEST. In particular when considering order selection 
of the AR process it is useful. Let us suppose that the AR model under consideration 
is of order p, but p is unknown. We then attempt to fit an AR model of order m with 
parameters ¢ml> ... , ¢mm' If p < m then we would expect the parameter ¢mm to be very 
small, so in an order selection procedure we would fit models for increasing m until ¢mm 
becomes sufficiently small. Now the question is: what is sufficiently small. 

It can be shown that ¢mm is an estimate for the partial auto-correlation function 
at lag m, and we know that the partial auto- correlation function will vanish for lags 
larger than p if the model is auto- regressive of order p. The Durbin-Levinson algorithm 
calculates recursively the parameters ¢m1, ... , ¢mm using a sort of best linear predictor 
method. The following result is most important when checking for the model to be an 
AR' model of order p. If the white noise process is also i.i.d., then the estimated partial 
auto-correlations satisfy the following limit: 

1/2 • n ¢mm =} N(O, 1), 

as n --> 00. This means as the sample size n becomes large, the estimated partial auto­
correlation function will have 95 % of its function values larger than lag p placed in the 
interval [-1.96n- 1/ 2 , 1.96n-1/ 2 ]. 

We now formulate the actual content of the Durbin- Levinson algorithm. If we have 
a model with ..y(0) >, 0, then the fitted parameters in the auto-regressive model can be 
calculated by the following recursive scheme: Let ;Pm = (¢m1' ... , ¢mm)' and let Vj be the 
estimated white noise variance in the AR(j) model. 

¢11 .0(1) 
V1 = ..y(0) (1- .0(1)2) 

1 ( m-1 . ) -. - ..y(m) - L ¢m-1,j..y(m - j) 
Vm-l j=l 

40 



( 

¢m-l.m-l 1 
= J. _ j ¢m-l.m-2 

'f"m-l 'f'mm 

<Pm-l.l 
, '2 

Vm = Vm-l (1 - <Pmm)· 

This scheme calculates estimated parameters of the model of order m + 1 using the fitted 
parameters of the model of order m. 

To calculate the confidence intervals, let r p be the matrix {i'( i - j) }i.j;l •...• P and let Vij 

be the ij th element of vpr;l. Then the confidence interval of level 1 - 0 (e.g. 0 = 0.05 
for 95 % confidence limits) for <Ppj is given by 

j -1/2... .1/2 < A. < j -1/2... ,1/2 
'f'pj - n "'1-a/2Vjj _ 'f'pj _ 'f'pj + n "'1-a/2Vjj, 

where 'l>1-a/2 is the 1 - 0/2 quantile of the standard normal distribution (N(0,1)). 

(3.10) 

Here the matrix vpr;l plays the role of estimated standard deviation of 4>p, the diago­

nal etements of which Vii hence are the estimated standard deviations of ¢pi. The program 
PEST does not calculate the confidence intervals for the parameters of the model, but 
provides the standard deviation of the estimators, and from those we can then construct 
the confidence intervals. For 95 % confidence intervals this is readily done by multiplying 
the standard deviation on the estimator by 1.96, efr. the method above. 

The Durbin-Levinson algorithm is not as precise as the maximum likelihhod or least 
squares methods, but it is much faster. The main use of Durbin- Levinsons algorithm is 
to create initial values for the maximum likelihood estimation. 

The maximum likelihood and least squares methods are both iterative methods that in 
practice are rather slow. Therefore it is important when applying one of these methods to 
come up with a good initial guess, that is a guess that is reasonable close to the maximum 
likelihood or the quadratic minimum error. This is where Durbin- Levinson comes in, and 
provides very qualified initial values. 
Exercise 
For a concrete AR model (free choice) calculate estimates and their confidence intervals 
using the standard deviations on the parameters provided by PEST, and by applying 
Durbin-Levinson directly to the estimated auto- covariance function. 

3.6 Estimation of parameters in MA processes: The 
innovation algorithm 

The situation for MA processes is very similar to that of AR process, only with that 
important difference that the algorithm for calculating the estimates is different. It is 
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called the innovation algorithm and works as foll~ws. 
Consider the MA (p) process 

X t = €t + 81€t-1 + ... + 8p €p, 

where € is a zero mean white noise. As in the case of the AR process we do not know 
the order of the moving average beforehand, so for each possible order m we may apply 
an estimation procedure to obtain estimates of the parameters em1 , em2 , .. . , Omm and of 
the white noise variance vm . A fast way of estimating the parameters i through the 
innovations algorithm: If the process is so that ')'(0) > 0 then the recursion scheme is as 
follows 

, k=O , ... ,k-l 

m-1 

vm - 7(0) - I: e~,m-A· 
j;;:O 

The use of this algorithm is similar to that of Durbin-Levinsons algorithm, and the part 
we will be most interested in is to obtain confidence intervals for the estimated parameters. 
The 95% confidence interval for the parameter 8mi is given by 

(
i-1 ) 1/2 (i-1 ) 1/2 

, -1/2 ,,'2 ' -1/2 ,,'2 8mi - 1.96n L- 8mk ~ 8mi ~ 8mi + 1.96n L- 8mk 
k=O k=O 

The use of the innovation algorithm is like the Durbin- Levinson algorithm not the most 
efficient one in terms of precision of the estimates; to that end we still have to refer to 
maximum likelihood and least squares methods. But the innovations algorithm has the 
advantage that it is fast, and provides us with good starting values for the maximum 
likelihood or least squares iterative procedures, as was the case for AR processes using 
Durbin- Levinsons algorithm. Therefore the innovations algorithm is also considered as a 
preliminary estimation procedure, that serves as initial values for maximum likelihood or 
least squares methods. 

Finally we comment that the preliminary estimation of causal ARMA processes uses 
the innovations algorithm as well, as we can represent the ARMA process as moving 
average model with infinitely many parameters. 

3.7 Estimation of parameters in ARMA processes 

In this section we present the most important results concerning the maximumlikelihoood 
estimators, their confidence intervals and their asymptotic distributions . If data are not 
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Gaussian it is standard anyway to apply these confidence limits to the estimates even 
though they have been obtained through least squares. 

The asymptotic distribution of the parameter vectors in an ARMA process are nor­
mally distributed. This means in particular that the paramaters themselves are normally 
distributed. The estimates and their standard deviations are produced by PEST. To ob­
tain confidence intervals we only have to multiply these standard deviations with <P,-a /2, 
i.e. the 1 - a/2 quantile in the N(O, 1) distribution, and add and subtract this new value 
from the estimate. 

3.8 Order selection methods 

In this section we will present some advanced order selection techniques. The problem 
of settling the right order of the ARMA process, or even AR or MA process, is far from 
trivial. 

The oldest approach to order selection uses a method of estimating the variances of the 
white noise terms and plotting these values for different models. The idea is the following. 
If a model has too few parameters included, then the remaining random variation will 
be put into the error term, and the variance of the white noise will hence be bigger than 
the variance of the true error term. If, however, the model is overparametrized, then any 
further increase in parameters will not decrease the variance of the error term significantly, 
since we altready have enough parameters to explain the model. If we thus decide to plot 
the residual variance against the order of the model, then we will see a curve that first 
decreases for then later to level out. The point where it levels out could then indicate 
the right order of the model. Obviously this approach seems quite fragile, and partly 
subjective, and we will not recommend this approach in practice; at most it can serve as 
an additional check to the forthcomming more advanced methods. 

In what follows we will describe the more advanced techniques known as Akaikes FTP, 
Ale, BIe and AleC indices. 

3.8.1 The FTP index for AR processes 

The ingenious idea of Akaike is basicly the following. Assume that the true order of the 
auto-regressive process is p. We let {Xd be the AR(p) process with parameters a" ... ,ap, 

I.e. 

X t + a,X t_ 1 + ... + apXt_ p = Et, 

and we let the white noise process have mean zero for convenience. Suppose X" ... , Xn 

are data from the AR(p) process under consideration, and let 0,1, ... , Ctp be the maximum 
likelihood estimates of the parameters obtained from these data. 

43 



Let {Y,} be an independent copy of the same 'AR(p) process. If we want to predict 
Yn+l based on Yi, ... , Yn , then we can use the linear predictor 

The mean square prediction error is then obviously 

The problem at this moment is that the coefficients al, ... , ap are unknown. If we, however, 
replace these coeffcients by their corresponding maximum likelihood estimates, then the 
mean square error is no longer O"? but can be calculated to be 

FTP(p) = a?n + P, 
n-p 

where a~ is the maximum likelihood estimate of the error term O"? 
The term FTP stands for "final prediction error", and when plotting FT P( k) against 

k, the graph will in general show a well defined minimum. It is this value that we will use 
as an estimate for p. 

But why choose the value at which the prediction error is at its minimum? At any time 
t, a value in an AR(p) process can be calculated from the values of the same process at 
time t -1, ... , t - p plus an error. If we include too few parameters, say only t -1 , .. . , t - q, 
q < p, then too much variation will be put into the error term, and hence the maximum 
likelihood estimate of this error term will be too large in comparison with what it should 
have been. If on the other hand we use more parameters than necessary, i.e. prediction 
using the past times t -1 , ... , t - q, where q > p, then the variation of variables that have 
no influence on the AR(p) process and its prediction is added, and this will consequently 
result in a larger prediction error. Thus the value at which FTP attains its minimum 
should be preferred. 

3.8.2 AIC, BIC and AICC indices for ARMA processes 

The Akiake AIC, BIC and AICC are indices all based on the same idea: to minimize 
a certain information criterion which puts costs on the number of variables. The more 
variables the more costly. The reason for putting costs on variables is the following. If data 
are originally from an AR(2) process, then of co~rse any ARMA(p,q), with p > 2, q :::: 0 
will fit the model equially well. And some of these models may even fit the data better. 
The reason for this is that we always have some random variation due to the error term, 
and some of this error may be removed by introducing additional variables. What the 
indices then do is to put a costs on these extra variables, so that we can distinguish 
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whether the improvement is significant or not. If the improvement is significant, the 
increase in the likelihood value will be bigger than the cost added. 

Consider an ARMA(p,q) process given by 

Put a = (a" ... , ap), and b = (b" ... , bq)', and their corresponding maximum likelihood 
estimates a and b. If L denotes the likelihood function then a and b are such that 

maxL(a,b) = L(a,b). 

The AlC index is then defined as follows 

AlC(a,b) = -210g L(a,b) + 2(p + q + 1). 

Thus we see that any increase in the likelihood will make the first term become smaller, 
but to make a significant better fit, the decrease has to be bigger than the increase from 
the second term. 

The BIC index is given by 

BIC = (n - p - q) log(na-; I(n - p - q)) + n(1 + 10g.j2;) 
1 n 

+(p + q) log(-- L: x: - na-;). 
p + q ,=, 

The AlCC index is given by 

AlCC(a, b) = -210g L(a,b) + 2(p + q + 1)nl(n - p - q - 2). 

The differences between these indices is basically the following. The AlC index has a 
tendency to overestimate p, while the AlCC index compensates for this by adding extra 
penalty for additional parameters. The index BlC is a consistent estimate for the true 
order, which means that as n ~ 00 the BIC index will converge to the true order, but 
may in practice well underestimate the true order. Consistency is not the case for neither 
AlC, AlCC and FTP indices, but they are all more efficient estimates than the BIC index. 
This means in practice that we should put weight of preference to AlCC, AlC, FTP and 
BlC in that order. All indices should however be taken into consideration when selecting 
a model, as well as the residual variance plots. A deviation from the expected in one of 
them may indicate something is wrong. 
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3.9 Order selection in practice 

The order selection is a complex thing that should be learned in practice. Here, however, 
there is a rough guideline for things to be aware of. 

First of all inspect carefully the graphs of the auto- corelation function and partial 
auto- correlation function. Do these suggest an AR model or MA model? One should 
at this point also be aware of the possibility of higher order AR or MA processes, where 
many parameters are set to zero. If e.g. the true model is X, + a1X'_1 + a12X'-12 = E" 

then the model only involves three parameters, but it is an AR( 12) model. The partial 
auto- correlation function of this model is only non-zero at lags 1 and 12. If the estimated 
partial auto-correlation function shows such a behaviour it may be useful to try a higher­
order model with many zero coefficients. Similar comments applied to MA processes, 
where the graph of the partial auto-correlation function is simply replaced by the graph 
of the auto- correlation function. 

After a thorough inspection of these graphs, calculate AlCC indices for the model 
ARMA(p,p), where p = 1,2, ... until minimum has been reached. The model attained at 
the minimum will form the basis for our further investigation. Consider the parameter es­
timates for this model, and more important, the parameter estimates divided by 1.96std., 
where std is the standard deviation of the parameter under consideration. According to 
(3.10), if the parameter value divided by 1.96std is between -1 and 1, then this is same as 
to say that a statistical test at level 95% for the hypothesis that the parameter value is 
zero is accepted, and similarly if the quotient is smaller than -lor larger than 1 then we 
reject the hypothesis. These values can be used to eliminate parameters from the model, 
one by one, and every time a parameter has been eliminated we calculate the AlCC index 
for the reduced model. If this is lower than the previous indices we shall consider this 
reduced model as a basis for further reduction. If not we proceed by trying to eliminate 
other parameters which quotients with 1.96std is between -1 and 1 as well. 

Continuing this way we obtain a final model for our data. If this model is an ARMA 
model it should be compared to possible higher order AR, MA and ARMA models, if 
the graphs of the auto- correlation and partiai auto-correlation functions of the residuals 
suggests so. If a higher order AR,MA or ARMA process is considered as well we compare 
the AICC indices of these models with that of the estimated lower order ARMA model. 

When calculating the AICC index and other indices as well it is important to notice 
that we use the maximum likelihood approach. When performing the preliminary analysis 
the AlCC index that appears there (in PEST) is based on Durbin-Levinson's algorithm, 
and is hence not a precise estimate for the true index value. The preliminary estimation 
is only used for creating initial values for the maximum likelihood procedure, and when 
comparing AlCC indices only use those calculated by the maximum likelihood method. 

At this point it is also appropriate to come with a warning for not misusing the 
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values created by the parameter estimate divided by 1.96std. Suppose we are calculating 
the AleC indices of ARMA(p,p) models, and inspecting the estimated models. If the 
values created by dividing the parameters by 1.96std for some larger lags turns out to 
be insignificant (between -1 and 1) then this is not necessarily a sign that the true order 
of the model has been passed. This is only the AleC index that can decide this. For 
example, higher order models with many zero parameters will indeed have the feature 
that the parameter estimates divided by 1.96std will be insignificant for most parameters. 
This does, however, not imply that search should be stopped the first time an additional 
parameter turns out to be insignificant. 

On the other hand, if we are searching only for a lower order ARMA model where 
there are no zeros among the parameters, then additional parameters with parameter 
estimates that divided by 1.96std is between -1 and 1 indicates that the true order has 
been passed. If the AleC index does not show the same behaviour (continue to drop), 
then this is an indication that there will be zeroes in the model, and that the there are 
parameters not yet included that will be significant . 

3.10 Diagnostics 

In this section we discuss various methods for checking the fit of the model to the data. 

3.10.1 Stationarity 

In case stationarity has not been obtained we cannot rely on the analysis we perform 
subsequently. Therefore a thorough check for stationarity has to be made. 

We have already mentioned methods for how to transform data into stationary mode 
when certain periodicity or trends are available. In this section we mention some more 
detailed methods for checking stationarity. 

First we have to consider the auto-correlation funct ion of the data. If the series is 
non-stationary is has a tendency to converge slowly to zero, while in turn stationary 
processes usually have a auto-correlation function that dies out fast. 

The visual inspection of the auto-correlation function of course requires some practical 
experience for how to decide what is 'slowly convergence' to zero. To obtain this experience 
it is recomendable for the inexperienced user to simulate some stationary ARMA processes 
of various orders, and consider the tail of the auto-correlation functions. These simulation 
should be compared to some real data sets which are obviously not stationary, like the 
airpass data. 

A formal statistical test can also be performed using a regression method. Suppose 
that the data we want to test for stationarity is represented by the time series Y;. Then 
regress 'VY; on Y;-l - Y, 'VY;_I, ... ,'VY;_p. If the model under consideration is an AR(q) 
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mpdel then put p = q - 1, or if it is an ARMA process, choose p large enough to make a 
good fit to the data. 

Then the t-statistic for the parameter estimate of 1';-1 - Y, defined in the usual way 
as the parameter estimate divided by its standard deviation, provides a test for nonsta­
tionarity. The distribution of this test statistic does, however, not have at-distribution, 
but a distribution that has been simulated and listed in a table called 'T~. Then compare 
the usual t-statistic with the critical values of the T~-distribution. 

3.10.2 Goodness of fit of the model 

When a presumeably appropriate model has been selected it is important to check the 
goodness of fit of the model. To this end we inspect the residuals, and test for indepen­
dence. If an ARMA model indeed fits the data, then the residuals have to be uncorrelated. 
Thus as a first inspection we plot the graphs of the auto-correlation function and par­
tial auto-correlation function. Inserting the lines y = 1.96/fo and y = -1.96/fowhich 
corresponds to end points in the 95 % confidence interval for the mean value of an i.i.d. se­
quence, 95 % of the points from the auto-correlation function and partial auto-correlation 
functions have to be between these two lines. If more values are significantly outside the 
confidence region, we have to reject our model. 

3.10.3 Tests for white noise errors 

The visual inspection of the plots of the auto- correlation function and partial auto­
correlation function is only a part of the diagnostics, though an important one. We will 
in following list a sequence of tests for independence which will all be applied in the 
analysis. 

The Portmanteau test 

The test-statistic Qw is used as follows. Choose a number (usually 20 or fo), and reject 
the hypothesis of independence at level Q if 

Qw > XL.(h - P - q). 

This test is very generous to the non-stationary models in the sense that only estreme 
non-stationary models are rejected. 

Turning points test 

Independence is rejected if the test-statistic T satisfies 
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where T in the program PEST is given by its asymptotic normal distribution 

T ~ N(J.lT , O"f). 

Difference sign test 

Independence is rejected if the test- statistic S satisfies 

IS - J.lsl/O"s > <1.>1-<>/2, 

where S in the program PEST is given by its asymptotic normal distribution 

S ~ N(J.l s, O"~). 

The difference sign test will not reject data with a strong cyclic behaviour. 

Rank test 

Independence is rejected if the test- statistic P satisfies 

IP - J.lpl/O"p > <1.>1-<>/2, 

where P in the program PEST is given by its asymptotic normal distribution 

P ~ N(J.lp , O"~). 
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3.11 The basic analysis ,'f 

In this section we present a scheme that applies to the first important part of our analysis: 
the model selection, its estimates and some diagnostics. 

I Data transformations. 

• Box-Cox transformation. If the data show a increasing variablity through 
time, a Box-Cox transformation can be used make this variability more 
constant. In particular, if the standard deviation increases linearly over 
time the logarithmic transformation can be applied. 

• Seasonality. If the data posseses a clear cyclic behaviour this can be 
removed either by the classical techniques or by applying a difference op­
erator at the apropriate lag. The difference method should be preferred. 

• Trends. Any polynomial trend of order k can be removed by k succesive 
applying the difference operator at lag one. Classical techniques are 
usually restricted to linear or quadratic trends. The difference method 
should again be preferred. Note that if a seasonal difference operator is 
applied it will remove a possible linear trend as well. 

II Preliminary estimation and order selection 

• Mean adjustment. Subtract the mean from the data, since this is a crucial 
assumption in our analysis developed . 

• Visual inspections. Use the graphs of the auto-covariance and partial 
auto-correlation functions to inspect for whether the model is likely to 
be a pure MA, AR or a mixed model (ARMA). 

• Fit ARMA(p,p) models. Fit ARMA(p,p) models in the following way. 
First apply preliminary estimation to obtain starting values for the max­
imum likelihood procedure. Then apply the maximum likelihood proce­
dure to calculate the AICC index, and other indices as well. When the 
AICC index is at its minimum, choose the corresponding model to be 
the basis for further analysis. Call this model for the best ARMA(p,p) 
model. 

• Parameter elimination. Use the values given by the parameter estimates 
divided by their respective standard errors times 1.96 as a guideline for 
parameter elimination. Select for example the numerically smallest such 
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value (i.e closest to zero) and replace the parameter by zero. Reesti­
mate this new model, and calculate its AICC index. If this is smaller 
than the best ARMA(p,p), let this reduced model take its place as best 
ARMA(p,p) model and proceed as before. If not, try remove other pa­
rameters by the same procedure. Continue until no further parameters 
can be removed (using the AICC index). 

• Higher order models. Include, if the graphs of the auto-correlation func­
tion or partial auto-correlation function suggests so, higher order AR, 
MA or ARMA models in the analysis. Compare with the estimated 
lower order ARMA process. 

III Diagnostics. 

• Plot auto-correlations and partial auto-correlations on residuals . All lags 
from one and up should be within the confidence lines. If one or more 
are outside, investigate if it significantly ouside in case of doubt. If so, 
the model has to be rejected. 

• Test for independence. 
residuals. 

Apply various test for independence to the 
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Chapter 4 

ARIMA and Multiplicative models 

4.1 ARIMA processes 

ARIMA processes is only a way of formulating (possibly non-stationary) models we have 
alIeady been considering under ARMA models. A time series {X.} is called ARIMA(p,d,q) 
if (1- B)d X t is a cuasal ARMA process. Here we of ourse assume that d is a non-negative 
integer. 

This means that {X.} satisfies the difference equation 

a(B)(l - B)d X t = (J(B)t,. 

If we call a1(z) = a(z)(l- z)d, then we see that a1 has a root of multiplicity d at 1, and 
hence the ARIMA model is only stationary for d = O. 

ARIMA models hence includes time series that can be described as an ARMA model 
after a d- dimensional polynomial trend has been removed, as we have considered previ­
ously. But they are more than that. Even if there is no trend present, the model may 
be an ARIMA process if it shows obvious deviations from stationarity, for example a 
slowly deaying sample auto-correlation function . To find an appropriate level for d, apply 
the first order difference operator succesively until the sample auto-correlation function 
decreases rapidly, and hence makes it possible to fit a lower order ARMA process to the 
differenced data. 

4.2 Roots and non-stationarity 

Consider first a zero mean AR(k) process, 

a(B)Xt = 't, ( 4.1) 
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where a(z) = 1 + alz + ... + akzk. Basically (4.1) is a difference equation, which general 
solution can written as the solution to the corresponding homogeneous equation plus a 
particular solution. We already know from (4.1) that a particular solution is given by 
X t = a(Bt1Et, wheras the homogeneous equation a(B)f(t) = 0 has the general solution 

where AI, ... ,Ak are constants and JJ.I, .. . ,JJ.k are roots of the polynomial g(z) = zk + 
alzk-I + ... + ak. Note that if JJ.i is a root of g(z) then JJ.7 + alJJ.7-1 + ... + ak = 0 and 
dividing by JJ.7 gives 

Thus 1/JJ.i is a root in a(z). 
To obtain asymptotic stationarity (as t -> 00) we must require that limt~oo f(t) = 0 

but this is only the case if for all i, JJJ.d < 1. This is again equivalent to say that all roots 
of a(z) have to outside the unit circle {z : JzJ :::; 1}. 

Concerning the general form of the auto-correlation function we use the Yule-Walker 
equations 

p(m) + alp(m -1) + ... + akP(m - k) = 0, m = k, k + 1, ... . 

The general solution to this homogeneous equation is exactly like for f(t), namely 

for some constants B1 , .• • , Bk , and symmetrical for negative r's. We see from this general 
solution that if JJJ.iJ < 1 for all i, then p(r) decay to zero as z -> z' as r -> 00 for some 
z with JzJ < 1. This means a very rapid decay in the tail, i.e for larger lags. If in turn 
not all roots of a(z) are outside the unit circle, then we ale in the non-stationary case, 
and there exists a JJ.i such that JJJ.d ~ 1. Only in very pathological cases we can construct 
a non-stationary process where the covariance is increasing through time (corresponding 
to JJJ.iJ >1), and we will not consider such cases here. If JJ.i is a point on the perifiri of 
the unit circle, i.e. JJ.i = eiO ( where i in the exponential refers to the imaginary number 
and not the index i), then JJJ.d = 1 and we see that BiJJ.i does not decay as r -> 00. 

There may, however, be other roots of a(z) outside the unit circle wich make contri­
butions BjJJ.j that decays to zero, so all in all will p(r) show a slowly decaying behaviour 
for smaller lags (say up to 100) for thereafter to level out and never converge to O. 

Thus non-stationarity can be seen on the estimated auto-correlation function as a 
slowly decaying behaviour, wheras in turn stationarity shows a fast decaying behaviour. 
This remark is very important in practice when we ale checking for stationarity. If the 
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ACF estimate decays fast, this simply excludes the possibility of roots of a(z) inside the 
unit circle, and hence confirms stationarity. This procedure is therefore very safe to use, 
and by far better than any existing test for stationarity. 

Same arguments applies to causal, invertible ARMA processes, since we can represent 
or approximate those with finite AR models. 

4.3 Roots critically close to the unit circle 

If the true underlying process we try to identify is an ARMA process where the polynomial 
a(z) has one or more roots close to but ouside the unit circle we may prefer to describe 
the model as a non-stationary ARIMA model rather than a stationary ARMA model. 
The reason for this is the following. 

If a( z) did infact have a root in {z : Iz I :S I} then the ARMA model would not be 
causal, and causality is our overall assumption for stationarity: if a process is not causal, 
and hence cannot be expressed as a future independent general linear process (which is 
by definition stationary), then it fails to be among this very general class of stationary 
time series, and is then most likely to be non-stationary. Of course it might be that it is 
simply future dependent but stationary, but we would not like to consider that kind of 
processes, and hence we define processes that fail to be causal to be non-stationary. 

If an ARMA process has a root very close to the unit circle, it may then in practice be 
impossible to disginguish the data from a non-stationary process. Consider for example 
the simplest case of an AR(l) model X t + aXt_ 1 = ft. If the true value of a is 0.99, 
then we will need a huge sample to be able to estimate a with such a precision that the 
confidence interval of the parameter does not include the value 1. Hence in this case, for 
normal data sizes, it is not possible to disginguish the stationary ARMA model with a 
non-stationary model. This leads to the conclusion that the estimation procedures may 
be very sensitive to models with a root close to the unit circle, since most estimation 
procedures break down when the model is non-stationary. 

It is therefore desirable to transform the data in such a way that the roots are well 
ouside the unit circle. In theory this means that non of the roots have confidence regions 
that may hit the unit circle. In practice it means that the sample auto-correlation function 
decreases rapidly to zero. 

ARIMA processes may be considered as a non- stationary ARMA processes (for d > 0) 
with a (multiple) root on the unit circle at the point (1,0) in the complex plane. ARIMA 
processes do not include the possibily that the polynoimal may have a root on the unit 
circle away from (1,0), i.e. in a point ei9 = cos(B)+i sin(B), where BE (-1t', 1t'] but different 
from O. We will discuss this phenomenon in the following. 

First notice that any (causal) ARMA process have an auto-correlation function that 
can be expressed in terms of the roots of the polynomial a(z), and therefore as well in 
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· terms of the dual polynomial g( z) that has roots which are the reciprocals of the roots of 
a(z). The roots .of g(z) are usually called 1-'1,''' ' l-'p' We don't need the details for how to 
write the auto-correlation function exact in terms of the roots, but the following intuitive 
argument shows that the statement is true. Write the ARMA process as 

fJ(B) 
Xt = a(B) ft· 

The coeffcients gu in the general linear representation (see ARMA processes, section 7) is 
then given by 

p fJ(z) = fguzu . 
II;=1 (1 - I-';z) u=o 

Then, in principle, we could find gu by differentiating the left hand side u times and 
evaluate at 0. This would then obviously give a rational function depending on the 
parameters in fJ( z), u and the roots of g( z), 1-';. Then using the fact that the auto­
correlation function is given by 

00 00 

p(h) = L: 9u9u-h/ L: 
u=-oo u=-oo 

2 gu, 

where gu = ° for u < 0, we have then proved that the auto-correlation function of an 
ARMA process is indeed a function of the roots of a. 

After this intermezzo, we will now draw some striking conclusions using this fact. 
Let us suppose that we are confronted with a non-stationary process, and calculate the 
"auto-covariance" function COV(Xl' X h). Note that the auto-covariance function does 
of course not exist in this case in the sense that Cov(X" X t+h ) depends on t, but we set 
t = 1 and calculate Cov(X" X,+h) for this value. Then if the non-stationarity is due to 
a root at complex number (1,0) (as for ARIMA processes) then the "auto-correlation" 
function we decay slowly as a rational function (a quotient between two polynomials, e.g. 
1/x, (x 2 + 3)/(x3 + x2 + 2x + 1) for then to level out at larger lags. 

In the case where the non-stationarity is due to root at e;9 for 0 # 0, then the functions 
cos(·) and sin(·) will impose a oscillating behaviour of the "auto-correlation" function. 

Thus we conclude, that non-stationarity can be seen on the auto-correlation function 
of the data as a slow decay in the ACF. In the case of a simple decrease (like a rational 
function) we may try to model the process by an ARIMA model, while if the auto­
correlation function shows a oscillating behaviour the class of ARIMA models will be 
insufficient to model the data. 

The same results applies to models which are stationary, but which have roots close 
to the unit circle; such models are best treated as non- stationary. 

If a time series has a root at e;9 then we cannot make it stationary by using the lag- 1 
difference operator \1 succesively as for ARIMA processes. Such processes will necessarily 
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show a cyclic behaviour in the ACF (though it may be decreasing at the same time). 
If the root is eiO then we may look for an integer k such that kB = 211' approximately. 
Then k is the length of the period of the cycles, and the operator Y' k = 1 - Bk can then 
be applied succesively to the data to remove the non-stationarity. For more advanced 
techniques on detecting () we refer to the forthcomming chapter on spectral analysis. 

4.4 Multiplicative models 

Also called seasonal ARIMA models or SARIMA models, multiplicative models allow for 
a more general trend and seasonality variation over time, which often is called" adaptive" . 

Fist let us define SARIMA models. A time series {Xd is called a SARIMA(p, d, q) x 
(P,D,Q), or, multiplicative (with the same parameters), with period s ifY, = (l-B)d(l­
B')D X, is a causal ARMA process on the form 

</>(B)<I>(B')Y, = O(B)8(B')f" 

where f, is a zero mean white noise process with variance 0'2, </>(z), <I>(z), ()(z) , and 8(z) 
are polynomials of order p, P, q, Q respectively. 

The parameter D is rarely more than 1. Thus is plays the role of a sort of indicator 
for if there is seasonality present (D = 1) or not (D = 0). Larger values for D than 1 
may be justified by a ACF plot after applying the operator (1 - B') already once. 

One can show that if O(B)8(B') contain the factors (1 - B)d, (1 - Bs)D then the 
seasonal component has a strictly stable "deterministic" form, and the trend has a stable 
"deterministic" polynomial form with constant coefficients. If on the other hand these 
factors are not contained in O(B)8(B') then the seasonal component has an adaptive 
form, where amplitudes and phases changes over time, and the trend has an adaptive 
polynomial form. 

We can interpret the multiplicative model in the following way. Suppose we are con­
sidering a time series that is periodic with period 12. Then we file all values for january 
in a separate file, all values for february in a separate fi le etc. Each of these data files are 
then assumed to follow the same ARMA(P,Q) model, and can hence be written on the 
form 

<I>(B12)X, = 8(BI2)U" 

where Uj +12' is the white noise process corresponding to the data from month j in each 
year. Furthermore we assume that the errors between months are correlated such that 
we obtain that the data from different data files are correlated as well. Suppose that the 
noise process satisfies the ARMA requirement 
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where {t.} is a white noise process. Then we can write Ut = <f>(Bt1(J(B)tt, and hence 

or 
<f>(B)~(B12)Xt = (J(B)0(B'2 )tt, 

which is the original SARIMA formulation. 
Thus in order to identify a multiplicative model it will be useful to use this interpre­

tation. After having made stationary the original series by applying (1 - B)d(l - B')D 
to the data we proceed by finding the orders of P and Q by visual inspection of the ACF 
and PACF at lags that are multiples of s. We should choose P and Q in accordance with 
the actual form of the ACF and PACF of an ARMA(P,Q) model. Next we choose p and 
q by considering lags 1,2, ... , s - 1 of the ACF and PACF. Finally we apply our standard 
techniques (AICC, parameter reduction techniques) to continue our analysis based on this 
model or more competing models. 
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Chapter 5 

Frequency Analysis 

5.1 Introduction 

Formally we may consider a (deterministic) cycle as a sine or cosine wave. Consider e.g. 
the cosine wave 

Jv(t) = cos(27rvt). 

Here v plays the role of the frequency of the wave: the number of oscillation the wave 
will perform in a unit interval [0,1]. If v = 1 the wave will perform one cycle, v = 2 two 
cycles etc. 

The period To is simply the reciprocal of the frequency, i.e. 

1 
To =-. 

v 

If e.g. the frequency is v = 10 then there are 10 cycles per unit interval, and hence the 
period or length of each cycle is hence 11

0
, 

Consider a time series on the form 
q 

Xt = L (ak cOS(27rVkt) + bk sin(27rvkt)) . 
k=l 

This time series model is a mixture of sine and cosine waves with different frequencies. 
Let us consider the simple example where q = 2, al = 1, a2 = 0, bl = 0, ~ = 0.75, 
VI = 0.0625 and V2 = 0.2000. Thus the model can be written as 

Xt = cos(27r(0.0625)t) + 0.75 sin(27r(0.2000)t). 

This model is of course deterministic, but serves well as an illustration of our method. 
If in turn the coefficients ak sand bk s were random variable with zero mean mutually 
uncorrelated, and 

lE(a~) = lE(b~) = <7~, 
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then the series x, is in fact stationary. The 'proof for this fact is a direct calculation of 
IE(x,+mx,) and can be carried out by the reader (one should obtain L;=1 CT? cOs(211'Vkm)). 

The series X, has a certain periodic behaviour composed of the two different frequencies 
V1 = 0.0625 and V2 = 0.2000 . The small frequency makes the longer cycles, while the 
higher frequence makes" cycles on longer cycles". 

From this simple example we would more or less be able to figure out the frequencies 
from this figure, but for more complex situations it may be desirable to have a procedure 
that can indicate these frequencies. Such a procedure is referred to as Fourier transform 
methods. 

Consider the following transforms, 

where the frequencies are taken to be Vk = kiT. The first transform is called the cosine 
transform, the second the sine transform and the third is called the periodogram. Let us 
calculate the three transforms for the series x, . We set T = 16. Then 

1 15 

Xco,(k) = - L: x, cOS(211'Vkt) 
4 '=0 
1 15 

X,in(k) = - L: x, sin(2?l'vkt) 
4 ,=0 

Px(Vk) = X!,(k) + X;;n(k), 

where Vk = {6' k = 0, 1,2, ... , 8. Note at this point, that it is usual only to specify these 
transforms for frequencies up to T 12. The reason for this will be apparent later when we 
see that the periodogram is symmetrical. Thus for a complete specification in [-1I',?l' j it 
is only needed to calculate values in [0,11'], which indeed correspond to values of Vk from 
k = 1, ... , [TI2j, where [.J denotes the integer part. The values are the following: 
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k Vk Xcos(k) Xsin(k) Pz(Vk) 
0 0.0000 0.00 0.00 0.00 
1 0.0625 2.01 0.06 4.04 
2 0.1250 0.Q7 0.16 0.03 
3 0.1875 0.75 1.12 1.82 
4 0.2500 -0.29 -0.29 0.17 
5 0.3125 -0.18 -0.12 0.04 
6 0.3750 -0.15 -0.06 0.03 
7 0.4375 -0.14 -0.03 0.02 
8 0.5000 -0.14 0.00 0.02 

The cosine transform has a peak at the frequence 0.1875, influenced from the real fre­
quency of 0.2000, and the sine transform has a peak at 0.0625, which corresponds to 
the real frequency of the sine contribution. The periodogram comprises the cosine and 
sine transforms, and has peaks both at frequencies 0.0625 and 0.1875. Thus we obtained 
a sort of emperical fealing for how the transforms work in practice: the sine transform 
has peaks at frequencies that corresponds to sine contributions, the cosine transform at 
frequencies that corresponds to cosine terms, and the periodogram has peaks whenever a 
sine or cosine term is present with the corresponding frequency. 

Moreover we notice the robustness of the transforms: the peak of the sine transform 
and periodogram at 0.1875 is influenced by the real frequency 0.2000. Thus in practice 
when observing a peak at a certain frequency we can never be sure that the frequency 
under consideration is the right one; in fact one can almost be sure it is not , but that the 
real frequency is close to the frequency at which we observe the peak. 

5.2 Spectral densities 

We now return to our stochastic analysis, and introduce some formal framework. Spectral 
analysis is a way of converting the auto-correlation function into a function that states 
something about the cycles in a stationary time series. Remember that cycles in a time 
series can also be seen as cycles in the ACF, and the spectral analysis tries to reveal these 
cycles and their frequencies. 

Frist let {p(h)lh = 0, ±1, ±2, ... } be any sequence of numbers. Then (Wold's theorem) 
p(h) is the auto- correlation function of some (stationary) time series {Xd if and only if 
there exists a function F with the properties of a distribution function on the interval 
(-11",11") (i.e. F( -11") = 0, F( 11") = 1 and F is non-decreasing) such that 

p(h) = J~ eiwhdF(w) . 
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If F is differentiable everywhere, then the normalized power spectral density function 
f(w) = F'(w) = d:F(w) exists, and we have the following relation 

p(h) = {" eiwh f(w)dw. 

This expression can be inverted to the following Fourier series expansion 

1 00 • 

f(w) = 27r L p(h)e-·wh
, -7r:::; w:::; 7r. 

h= - oo 

For real-valued processes (which is the only kind of processes we consider in this course) 
we have that 

1 00 

f(w) = - L p(h)cos(hw), -7r:::; w:::; 7r. 
27r h=-oo 

or 
1 1 00 

f(w) = - + - L p(h) cos(hw), -7r:::; w :::; 7r. 
27r 7r h=l 

The function F may then be recovered by integration 

F(w) = jW f(O)d(}: w + 7r +.!. fp(h)sin(hw). 
-" 27r 7r h=l h 

The spectral density h(w) is based on the auto-covariance function ,(h) = oJp(h), and 
defined in a similar way as the normalized spectral density, namely 

1 00 

h(w) = 27r L ,(h)cos(hw), 
h=-oo 

for -7r:::;w:::; 7r. 
Let {X,} be an ARMA(p,q) process with the usual representation 

ift(B)Xt = O(Bltt, 

where ift and 0 have no common zeros and Et is a zero mean white noise with variance fJ2. 

Then the spectral density of X t exists and is given by 

For obvious reasons the spectral density of an ARM A process is often called a rational 
spectral density. 
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5.3 Periodogram 

The periodogram is a statistic that captures the features of the spectral density. In some 
books the periodogram is an attempt to estimate the spectral density, while in (most) 
others it is only proportional to an estimate of h. In practice this does not matter much 
since we are mostly interested in the frequencies where the density have peaks rather than 
the actual values of the density itself. 

As in the introduction we define the periodogram, IN, based on the observations 
X1"",XN by 

IN(w) = A(wj2 + B(wj2, 

where A and B are respectively the cosine and sine transforms, 

A(w) 
1 N 

= 1M Lx;cos(wi) 
vN ;=1 

B(w) = 1 ~ . ( .) 
~ L.,; X i SIn Wl. . 

vN ;=1 

The periodogram can also be written as 

IN(w) = ~ It Xt e- ;
wt

I

2 

t:::;:l 

To see this connection, 

I
t Xte-;wtI2 = 
t=l 

N N 
L Xt e -

iwt L Xt
eiwt 

t=l t=l 

= 

= 

(~Xtcos(wt) - i~XtSin(wt)) 

x (t,Xtcos(wt) + it,Xt Sin(wt)) 

(t,XtCOS(wt)) 2 + (t,XtSin(wt)) 2 

N N 
+i L Xt cos(wt) L Xt sin(wt) 

t=l t=l 

N N 
-i L Xt cos(wt) L Xt sin(wt) 

t;:;:l t=l 

_ N (A(w)2 + B(w)2) . 
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Next we attempt to explain why the periodogram peaks when we hit or are near one of 
the "real" frequencies in the model. Let us consider the pure harmonic model 

K 

X, = 2: (Ai COS(Wit) + Bi sin(wit)) + E" 
i=I 

where we assume that the frequencies Wi = 27rp;/N for some integers PI, ···,PK, 0 ~ Pi ~ 
[N/2]. This assumptions helps considerably in our calculations, and does not interact 
with the general argument which follows. 

The harmonic model may be considered as a standard multiple linear regression model, 
where Ai, Bi are the unknown parameters. Thus we may apply a least squares method 
to estimate the unknown parameters. Put 

N ( K )2 Q = ~ X, - ~ (Ai COS(Wit) + Bi sin(wit)) 

Our task is then to minimize Q with respect to Ai and Bi. Differentiating Q w.r .t. Aj 
gIVes 

N ( K ) d~j Q = ~ 2 X, - ~ (A; COS(Wi t ) + Bi sin(wit)) cos(Wjt), 

and solving for d~ Q = 0 gives , 
N N K 
2: X, cos(Wjt) - 2:2: (Ai cos (Wit) + Bi sin(wit)) cos(Wjt) 
t::;1 t=1 t=1 

K N K N 
- 2: Ai 2: cos (Wit) cos(Wjt) + 2: Bi 2: sin(wit ) cos(Wjt) 

i=l t=1 

K K 
= 2: AiCij + 2: Bidij , 

i=l i:::: 1 

where Cij = 2:~1 COS(Wit) cos(Wjt) and dij = 2:~1 sin(wit) cos(Wjt). Similarly differentiat­
ing w.r. t. B j and eveluating at zero gives 

N K K 

2: X, sin(wjt) = 2: A;dji + 2: Bisij , 
t=1 i;;:::;) i=1 

where Sij = 2:~1 sin(wit) sin(wjt). These equations are normal equations. Now using that 
the frequencies are given by 

27rPi 
wi=N' 
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we remind the reader about the orthogonality relations 

t C7fPt
) C

7fqt
) { ~/2 

0-:; p # q -:; [N/ 2] 
cos -- cos -- = o < p = q < [N/2] 

1;1 N N p=q=O or p = q = N/2, N even. 

t . C7fPt) C7fqt) sm -- cos --
/;1 N N 

0 

t· C7fPt) . C7fqt) { 
0 0-:; p # q -:; [N/2] 

sm - - sm -- - N/2 0< p = q < [N/2] 
/;1 N N N p=q=O or p=q=N/2, N even. 

Then we immediatly have that c;; = Si; = 0 for i # j , di; = 0 for all i , j and C;i = Sii = N /2 
where i is such that Wi # 0 and Wi # 7f (corresponding to p # 0 and p # N /2 when N is 
even). Thus the normal equations reduce to 

2 N . 2 N . 
A; = N LX, COS(Wit ), Bi = N LXI sm(Wit ), 

t::;:l t=l 

so as estimators for Ai and Bi we have that 

• 2 N 
Ai = N LXICOS(Wit), 

t=l 

• 2 N 
Bi = N LXI sin(wit). 

t=l 

The mean of the estimators are resp. Ai and B i , so they are unbiased. The variance of 
the estimators are given by 

• • 2a2 

var(Ai) = var(Bi) = N'. 

We now relate the estimators Ai and Ei to the periodogram. If Wp coincides with one 
of the real frequencies in the harmonic model Wi (which we can assmue is different from 0 
and N/2; if not we are in a trivial case) then we can write the cosine and sine transforms 
on the form 

A(wp ) 
VN . 

- -A 2 I 

B(wp ) 
VN . 

- -B 2 I 

Let 
Ip = IN(wp), wp = 27fp/N, p = 0,1, ... , [N/2]. 
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:Then 
'i • 

IE(Ip) = ~ (IE(Al) + IE(iJl)) . 

But IE(Al) = IE(Ai)2 + var(A.) = Af + 2a;/N so, by a similar argument for IE(iJ1) , we 
get that 

whenever Wp = Wi. 

If on the other hand the frequency wp is far from any of the real frequencies Wi we do 
the following trick. Insert the frequency Wp in the model by putting Ap = Bp = O. Then 
the same calculation as above results in 

Thus we conclude that the expected value for the periodogram when Wp = Wi is large 
(of order O(N)) while the expected value far from w, s is small (of size 0(1)). Formally 
we are only making the destinction between if Wp = Wi for some i or not. In practice, 
however, we also need to consider whether Wp may be close to some Wi or not. The reason 
is the following. If wp is indeed very close to some Wi then it may be very difficult to 
distinguish wp from Wi using a normal sized data set; thus the periodogram will still tend 
to show a peak for values Wp close to Wi. This feature is rather fortunate since it provides 
us with some robustness in estimating the frequencies at which there are peaks in the 
periodogram. 

This little excursion into the world of harmonic processes explains in a heuristic man­
ner the elementary features of the periodogram, that was already demonstrated in the 
introduction. 

5.4 Tests for hidden periodicities 

Testing goodness of fit of a time series model is often done by testing for white noise of 
the residuals. The Portmanteau test and the other non- parametric tests we have already 
considered, serve as basic tests for white noise. They are, however, unable to reveal more 
sophisticated trends such as cyclic or periodic behaviours. In this section we describe 
some tests that are able to detect periodicities; the null hypothesis is that the data are a 
Gaussian white noise and the alternative hypothesis is that the data are a Gaussian white 
noise added a periodic function. Thus in this context the" data" we are referring to will 
often be the residuals. 

Let {X.} be our time series. Suppose that 

X, = I' + A cos(wt) + B sin(wt) + t" 

66 



where A, B, ware known constants, and tt is a Gaussian (normal) white noise with variance 
(72. 

Then we want to test 
Ho: A= B=O 

against 
Hl : A, B are not both zero. 

We only carry out the test whenever W = 27rk/n for some k such that wE (O,7r). We 
reject Ho in favour of Hl at level Ct if 

(n - 3)I(w) 
L:~l Xl - 1(0) _ 2l(w) > Fl _,,(2, n - 3) 

A more general tests is known as Fisher's test and goes as follows. We want to test the 
hypothesis Ho : Xl, ... , Xn is a Gaussian white noise against Hl : Xl, ... , Xn is a Gaussian 
white noise plus a deterministic periodic component. Here we do not need to specify the 
frequency or equivalently the exact period. Let q = [in -1)/2], and 

~ _ maxl<i<q I(Wi) 
q - q-l L:f=l I(Wi) , 

where Wi = 27ri/n. If x denotes the observed value of ~q then we reject the null hypothesis 
at level Ct if 

q I 

lP(~q ~ x) = 1- I)-I)i ' I( q~ ')1(1- jx/q)rl 

j=O J. q J. 

is less than Ct. Here the symbol b = (a)+ means that b = a whenever a is positive and 
zero otherwise. 

In Fisher's test we conclude in case of rejection that there exist a periodic component 
of some unspecified frequency. From the test-statistic ~q we see that the method of the 
test is essentially to compare the maximum peak of the periodogram with its average 
level. The question then arises: can this unspecified frequency be another frequency than 
the one that corresponds to max l(wi)? It can be shown that the probability that the 
periodicity is due to some other frequency than the one that gives the maximum peak is 
less than Ct. Hence we assume, in case of rejection in Fisher's test, that the frequency 
under consideration is the one giving rise to the maximum peak. 

5.5 Spectral analysis in practice 

The periodogram IN(w) can be written as 

N-l 

IN(wm ) = I: ..y(k)e-ikwm
, 

k=-(N-l) 
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where 
1 N-Ikl 

i'(k) = N L (Xt - x)(Xt+lkl - x) 
t=l 

is the usual estimate of the auto-covariance function, and Wm - 27rm/ N is a Fourier 
frequency with m '" O. 

To see this connection we use that 

(5.1) 

where the last relation follows from the orthogonality relations 

N N 

L eiwmt = E e- iwfnt = o. 
t=l t:::::l 

At this point it is most important that the frequency under consideration is a Fourier 
frequency. In fact most of the spectral analysis in practice relies on this assumption. But 
then from (5.1) the result follows by change of variable k = s - t. 

This result then suggests that a good estimate for the spectral density would be 

This is, however , not the case! The variance of the periodogram var(IN(wm )) does not 
converge to zero as N --> 00, which proves that IN can never be a consistent estimate of 
h (i.e . IN(wm ) does not converge to h(wm ) as N --> 00). Moreover, 

decreases as N increases. This fact results in a erratic and wild behaviour' of the peri­
odogram, and since spectral densities are functions that are smooth in their behaviour it 
is useless to use the periodogram as an estimator for the spectral density. 

The periodogram itself is however far from useless; it should only be used in the 
right way. If the data e.g. are normally distributed the periodogram IN(wm ) IS the 
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maximum likelihood estimate of the spectral density h! This proves the optimality of the 
periodogram as an estimator of h. But how can this fact be true when at the same time 
the periodogram is wild and erratic, and fails to capture the similarity of a theoretical 
spectral density? The point is that IN(wm ) is an optimal estimate for each single m, point 
estimates, but as an estimate for the whole function h it fails. This feature is also known 
from many other branches of statistics, and in particular from density estimation theory. 

The optimality and sufficiency of the periodogram suggest that in order to obtain a 
good estimator for h we should consider a function of the periodogram. To this end we 
may introduce the so called lag-window AN, which is a real even function by which we 
multiply the auto- covariance estimate. Thus we will estimate h in the following way 

We attach the suffix N to the lag- window to highlight the dependence on N. For example 
we may chose the lag-window to be the function 

A (s) = {I lsi:::; M 
N 0 lsi> M 

where M < N - l. 
This function truncates the auto-covariance function for larger lags, and the idea 

behind this is that the auto-covariance function is very badly estimated in the tail, since 
the estimate is based on very few observations. Thus for an appropriate choice of M one 
mi.ght expect that AN has a smoothing effect on the periodogram. This is indeed the case, 
as we can see in the following argument. 

We have the following representation of IN, 

N-l 

IN(wm ) = L .y(k)e-ikwm 

k=-(N- l) 

I 

which can be inverted by means of Fourier theory to 

Then inserting this expression into the expression for h(wm ) we get that, using cos, AN 
and .y are even functions, 
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where 
1 N-l 

W(O) = - 2: AN(s)e- isO
• 

27r s=-(N-l) 

Thus we see that the spectral estimate is an integral of the periodogram weighted with 
the smoothing function W. The smoothing function W is called the spectral window. 

The conclusion is that multiplying the auto-covariance function with a lag-window 
has the effect of smoothing the periodogram with a spectral window. 

For example for the truncated lag- window 

we have the corresponding spectral window 

Isl:S M 
lsi> M 

W(O) = ~ t cos(sO) = 1 sin((M + 1/2)0), 
27r s=-M 27r sin( 0 /2) 

which is also know as the Dirichlet kernel. 
A more commonly used lag- window is the Bartlett window, which is defined by 

A (s) = { 1 -Isl/M Isl:S M 
N 0 lsi> M 

The spectral window corresponding to this lag- window is 

W(O) = _1_ (sin(MO/2))2 
27r M sin( () /2) 

Various other windows have been proposed, but the important thing to notice for the 
applied user is that it does not matter too much which window is chosen, but it is indeed 
very important that some window is applied. 

When a window is chosen, one has to choose M as well. There is no fixed rule for 
how to do this, but it should be noted that in order to obtain consitent estimates of the 
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spectral density one should choose M such that M ~ 00 as N ~ 00. Thus a fixed 
proportion like 20 % or 30% of N is certainly a possibility. 

Another fact that should be noticed is the following. As M increases, so does the 
variance of the estimates, but their bias decreases. On the other hand, if M decreases so 
does the variance but the bias increases. This fact should also be taken into account when 
choosing M. What are we interested in? Low bias or low variance on the estimators? 

Finally we will describe the aliasing effect of spectral analysis. This has to do with 
the problem of discrete sampling; and any time series we consider in these notes can be 
considered as a discrete sample of some phenomenon. 

Let the phenomenon be ft, say, in continuous time, and let us only sample at time 
t = 1,2,3, ... , N. Suppose ft is a periodic function with 1.5 periods per unit time. Thus 
our sample /t,!2, .. . '!N will also show a periodic behaviour but not with period 1.5. If 
we e.g. sample at time t = 2,4,6, .. . , then again we may find a periodic behaviour of the 
sample, but with a period that is different from the original function or from the first 
sample. 

This problem that a discrete sample may not capture the true frequencies of the 
underlying model is called the aliasing effect. The aliasing effect has to be studied carefully 
when a continuous record of data is available, and we are left with the job to sample from 
this continous record (could e.g. temperatures during the day, the exchange rate at any 
point of the day), but in most cases the data are already given and nothing can be changed. 

One should though be aware of the fact that the frequencies measured/estimated from 
the data may not reflect that frequencies in the underlying phenomenon. The frequencies 
are, however, the true frequencies for the data sample, and since we are only left with a 
data sample in practice, all we can do is to fit a model using all the information we can 
possibly extract from the data. The fitted model may then refelct some features of the 
underlying true model, or it may not . 
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Chapter 6 

Multivariate Time Series and 
Transfer models 

6.1 Introduction 

For many analyses or investigations in practice, the data are drawn from various sources 
of information. For example an electricity company may compare data of total cur­
rent production of electricity with various other factors, such as industrial production, 
consumption of certain goods or average daily outdore temperatures. In order to draw 
conclusions, or to make decent predictions, it may be necessary, or at least desirable for 
the general understanding, to process the data analysis as a multivariate case, i.e. the 
data are not considered on a isolated basis, but always in relation to each other. 

If the data of the electricity plant were X tl , Xn , X t3 and X t4 for respectively total 
electricity production, industrial production, consumption and temperature, we could 
then set up our time series analysis by considering the time series data given by the 
vector 

x, = (Xtl ,X'2,X'3,Xt4 ),. 

An aim of our analysis could be to analyze the connection between the four components. 
In particular one might wish to test for independence of certain variables of each other, 
or to express one of the marginal processes as a linear combination of another. 

We denote the vector in boldface to distinguish from the coordinates of the vector. 
In the following all vectors and matrices will be denoted in boldface. All vectors are by 
default column vectors; thus we may write the vectors as transposed of row vectors, which 
is denoted by the prime X'. 

Let X = (XI, ... , Xm)' be a random vector. Then the mean of the vector is defined as 
the vector of the means, 

IJ. = lEX = (IEXI , ... , IEXm )'. 
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Moreover, if X and Yare two random vectors, then the covariance between X and Y is 
given by 

Cov(X, Y) = IE((X - IEX)(Y - IEY)'). 

6.2 Stationarity 

As in the univariate case, the key assumption for multivariate time series is stationarity. 
Let X, be a m-dimensional multivariate time series with IEX~ < 00 for all t and i. 
This assumption ensures the existence of the covariance function. Let IL, = IEX" and 
let ret + h, t) = COV(X'+h, X,). Then we say that X t is (second order) stationary if 
and only if ILt and ret + h, t) do not depend on t. In that case we define IL = ILt and 
r(h) = ret + h,t). 

Assume that X, is a m-dimensional stationary time series. If we let r(h) = (-rij(h)}, 
then we see that iij(h) = COV(X(t+h)i,X,j) . In particular, if i = j then iij(h) is the 
auto-covariance function of the i'th coordinate process X'i' For i i- j we say that iij(h) 
is the cross covariance function between X'i and Xtj . Note that in generaliij(h) i-iji(h). 
Due to stationarity we have, however, that 

from which we conclude that 
r(h) = r( -h)'. 

The correlations are defined in the usual way, 

pii(h) = iii(h)/J;.(O), 

and the cross-correlations are defined by 

In particular, P'j(O) is the correlation between Xii and X' j . 
As building blocs for ARMA models etc. we also need to introduce multivariate white 

noise processes. A process Z, is a m-dimensional white noise with mean 0 and covariance 
. matrix 17 if r(h) = 17 if h = 0, and 0 otherwise. In that case we write {Zt} ~ W N(O, 17). 

If for all i,j = 1, ... , m, Lh=-oo bij(h)[ < 00 then Xl has a spectral density ~ that 
can be wri t.ten as 
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and which can be inverted into 

Notice that since the cross-covariances are not in general symmetrical, the cross-spectral 
densities !ij().,) are in general complex valued. 

6.3 Estimation 

Let Xl'''''X" be observations from a m-dimensional time series. As in the univariate 
case we will estimate the mean vector by 

1 " 
jL=-LXi , 

n i=l 

The i'th coordinate of this estimator is simply the usual univariate estimate of the mean 
of the i'th process. 

As in the univariate case we have consistency of this estimator under the mild condi­
tions, 

as n -t 00 if lii(h) -t 0 as h -t 00. Moreover, 

m 00 

nIE ((.X" - JL)'(X" - JL)) -t L L lii(h) 
i::::l h=-oo 

if Lh=-oo hii(h)1 < 00 for all i = 1, ... , m . 
We also have asymptotic normality in case X t is express able as an infinite moving 

average process; the result is, however, of limited inmportance since it does not provide 
any concrete information about how to obtain confidence limits. 

To that end we simply approximate the confidence limits by applying the confidence 
limit for each univariate process. 

To estimate r( h) we use the natural estimates 

if 0 :::; h :::; n - 1, and 
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if -(n - 1) $ h $ O. The reason for the separate definitions for h being positive and 
negative is that we do not have the property r(h) = r( -h) as in the univariate case. 

Once estimated r, and hence all,;; (h), we estimate the cross- correlation function by 

which for i = j simply is the auto-correlation function of the i'th process. 
The consistency of t can be proved under the condition that X, is a general linear 

process, and the white noise process consist of independent random vectors . 
The following result is of particular importance. Consider two univariate time series 

XlI and X,z, and suppose that 

00 00 

XlI = L a;Z,_;,l, X,z = L (3;Z,-;,z, 
j=-oo j =-oo 

where {Z"i}, i = 1, 2 are two sequences of i.i.d random noises, that are also independent 
of each other. This implies that XlI and X'Z are independent of each other. Then if 
L; la;1 < 00 and L; 1(3;1 < 00 then for h :::: 0, 

P12(h) ~ AN (0, ~ ;f:oo PIl(j)P22(j)) , 

where AN stands for asymptotically normal. 
This results has as main consequence the following: If we wish to test for independence 

of XlI and Xn then we have to know PIl (h) and PZz( h) for all h. These could in principle 
be substituted by estimated values, but there is a risk that we would obtain a poor 
estimate due to few correlation values, or poorly estimated correlation values. 

Instead we use a trick that is called prewhitening. Prewhitening basically consists of 
transforming Xn and Xn into white noise processes (from there the name prewhitening, 
since the white noise process has a spectrum that corresponds to white light) by applying 
a linear filter, i.e. to express Z" as a (infinite) linear combination of the X,i's, 

00 

Z · - ,,~(j)X . . 
tt - ~ "0 t-j,t " 

j=O 

This approach is not feasible in practice since the true model is hardly ever known. Instead 
we fit ARMA(p,q) models to Xn and Xn , and use the residuals from the two fits as our 
prew hi tened processes. 

In these two residual processes the pn(h) = P22(h) = 0 for h of 0, and Pn(O) = PZ2(0) = 
1. Thus the result above states that asymptotically P12(h) for the prewhitened processes 
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is normally distributed with mean zero and variance lin. Thus the 95% confidence limites 
are easily constructed as ±l.961 yin. Then plotting pdh) of the residual processes against 
h provides a test for independence of the two processes Xn and X'2: if 95% of the points 
are within the significance limits we accept the hypothesis of independence, and otherwise 
not. 

To obtain the effect of prewhitening, namely that the sum L~-oo Pll(j)P22(j) reduces 
to 1, it is in fact enough to prewhiten only one of the processes. If we prewhiten Xn only, 
then Pll (h) = ° for all h of- 0, which is enough to ensure that the sum equals l. 

As in the univariate case, significant values of P12 (h) for some lag h suggests such values 
included in the model. But in the multivariate case we should remember to prewhiten 
one of the series before we calculate P12(h); if not we cannot conclude anything from the 
plot of P12(h). 

6.4 Multivariate ARMA processes 

The definition of multivariate ARMA processes is similar to that of univariate processes. 
Let {X,} be a m-dimensional stationary time series. Then we say that {X,} is an 
ARMA(p,q) process if 

iJ>(B)Xt = e(B)Zt, 

where 4>(z) = 1+ 4>,Z + ... +iJ>pzP, e(z) = 1+ e , z + ... + eqZq, iJ>" ... , iJ>p, e
" 

.. . , e q are 
m x m matrices, I is the identity matrix , and {Z,} is a white noise process WN(O,17). 

Causality and invertibility is defined in the same manner: the process X, is causal if 
it can be expressed as a future independent moving average process (possibly of infinite 
order), and it is called invertible if the process has an (possibly infinite) autoregressive 
representation. 

It turns out that a criterion for cuasality is 

det4> ( z) of- 0, 

for all z : Izl :5 1 (z complex). Similarly a invertibility criterion is 

dete(z) of- 0, 

for all z : Izl :5 l. 
If X t is causal, then by definition 

00 

X, = Z=CjZ,-j, 
j=O 
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and since !P(B)X, = e(B)Z, then we can find the coefficient matrices C j by 

00 

L cjzj = !p-l(z)e(z) 
j=O 

for JzJ ~ 1. Similarly for invertible models we have per definition that 

00 

LDjX,_j = Z, 
j=O 

and we can find the coefficient matrices by 

for Jz J ~ 1. 

00 

LDjz' = B(z)-l!P(z) 
j=O 

In practice one can apply the following algorithm to calculate the coefficient matrices: 

Co = I = Do 
j 

Cj L!PiCi-j + Bj 
i=1 

j 

Dj = - L e,Dj_i -!Pj 
i=l 

where we define B j = 0 for j > q and !Pi = 0 for i > p. 

6.5 Estimation of ARMA models 

The estimation methods are basically the same as for univariate models, though a seri­
ous complication is present for multivariate models. The basic estimation procedure is 
the maximum likelihood method, which superimposes that the data are sampled from 
a multivariate normal distribution . In the univariate case this procedure works without 
complications. In the multivariate case, however , there is a problem in the estimation of 
mixed ARMA processes (i.e. both containing autoregressive and moving average param­
eters). 

The problem is that of identifiability, and which results from the likelihood surface 
does not uniquely define a maximum. Thus we may choose several matrices as parameters 
for our ARMA model that all optimizes the likelihood function. 

This problem of non- uniqueness does not happen if we are considering models that are 
either pure auto-regressive or moving average. For that reason many computer packages 
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does not deal with multivariate ARMA processes at all. The ITSM package deals with 
multivariate AR processes only, and SAS deals with multivariate processes in a state-space 
setting. 

If we absolutly do have to use a mixed ARMA model, one way of trying to "direct" the 
algorithm to the "true" maximum likelihood estimate is to use the maximum likelihood 
estimates of the univariate processes as starting values for our multivariate iteration. This 
does not guarantee, however, that the limit of our iteration will be the "true" maximum 
likelihood estimator of the data. And even worse: there are no ways to measure if we 
found the "true" model or not. For exactly this reason it is advisable to proceed with care 
in practical applications, and mainly to use pure auto-regressive or pure moving average 
models. 

A simplification of the estimation procedure for multi variate AR processes is based 
on an extention of the Durbin-Levinson algorithm. In the univariate case this was our 
preliminary estimation procedure for AR processes. For multivariate processes we will use 
this procedure instead of the maximum likelihood estimation procedure in order to save 
computer time. As we know from the univariate case the estimates using the Durbin­
Levinson algorithm are fairly precise, and the likelihood surface in the multivariate case 
is so complicated that the iterative maximum likelihood estimates may well end in a local 
maximum instead. 

6.6 Coherence and Phase-spectra 

Consider a multivariate (stationary) time series X, of dimension two. All arguments in 
the following carry through immediately to higher dimensions. 

Then we can write 

( 
Xn ) X, = X'2 . 

The covariance function r(h) of X, can then be decomposed as 

r(h) _ (ill(h) i12(h)) 
- i21(h) i22(h) . (6.1 ) 

The functions iii(h), i = 1,2 are the auto-covariance function of the marginal processes 
X" respectively, and ii,(h), i # j, i,j = 1,2 are the cross-covariance functions, which we 
know in general do not coincide with each other. 

The spectral density h is given by 
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which then by (6.1) can be written as 

(6.2) 

In (6.2) the diagonal entries are simply the spectral densities of the respective marginal 
processes X tl and X'2' The functions hI2(>') and h21(>') are the so-called cross- spectral 
densities, or simply cross spectra, of X tl and X'2 . From (6.1) it is clear that 

Since r( h) is not in general symmetrical, the cross-spectra are in general complex valued. 
Note also that /12(h) and /21(h) contain equivalent information since they are related by 
the property r(h) = r (-h)', so that we may write /12(h) = /21(-h)'. Therefore also the 
cross--spectra h12 and h21 contain equivalent information, and it is sufficient to consider 
one of them. 

Let us consider h12 . Since hI2(>') is in general complex valued we can write 

where C12(>') is the real part of h12 (>.) and Q12(>') is the negative of the imaginary part. 
In this context C12(>') is called the co-spectrum, and Q12(>') the quadrature spectrum. 

We may also express h12 (>.) in polar coordinates, 

Here 012(>') is obviously the length of h12(>'), and is consequently given by 

This length is referred to as the amplitude spectrum. The function </;12(>') is obviously 
the angle between h12(>') and the first axis. This angle can also be calculated using that 
the proportion -qd>')/CI2(>') is tan(</;12(>')) , so that 

</;12(>') = tan-1( -QI2(>')/CI2(>')). 

This angle is referred to as the phase-spectrum. The complex coherence WI2(>') is defined 
by 

80 



and the coherency is defined as the absolute value of this complex nUrriber, IW12('>-)I. The 
coherency is a sort of measure of linearity between X tl and X 12 • In fact it can be shown 
that the coherency is a correlation coefficient between random coefficients of components 
of X tl and X 12 that have frequency .>-. A linear relationship is indicated if the coherency 
is 1. In fact, if X tl and X t2 have the linear relation 

00 

X t2 = L <PiXt-i,l> 
i=--oo 

then the coherency between the two processes is 1, where Li 1 <Pi 1 < 00. In this context 
we say that X t2 is given as a time-invariant filter of X tl . It also follows that any linear 
filter applied to both processes do not change the coherency between them. Finally we 
remark that if both processes are uncorrelated then obviously the coherency is O. 

For regression models , where we in addition to the linear relationship also have added 
a noise, the coherence is not 1. This is due to the noise factor. Thus the linear gression 
Xt,l = X t,2 + Et have coherence 1 if and only if Et = O. 

An interesting class of models to consider are the so- called delayed regression models, 
where we have 

X t 1 = aXt- d2 + Et· , , 

Here we have the cross- covariance function given by 

and cross-spectral density 

1 00 

= 27l' L e-i>.h',2( h) 
h=--oo 

00 

- .!:.. L e-i>.h'22(h - d) 
27l' h=-oo 

= ae-i>.dh22 (.>-) . 

The auto-covariance function of Xtl is given by 

,ll(h) - COV(Xt,l, XHh,l) 

which immediatly results in 

= Cov( aXt_d,2 + tt, aXHh- d,2 + EHh) 

= a2'22(h) + COV(Et, EHh) 
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where h,(>.) is the (constant) spectral density of the white noise process. 
Using the expression for hd>') only we get that cd>') = a cos(>.d)h22 (>.), qn(>.) = 

asin(>.d)h22 (>.), Qu(>') = ah22(>') and <P12(>') = ->.d. To calculate the coherency we use 
the relation between hn and h22 to get 

W12(>') = ah22(>')e-
i
,\d , 

Vh22(>.)(a2h22(>') + h,(>.» 

and hence 
1 

Iwd(>.) = . VI + h,(>')/(a2hn (>'» 

The important thing to notice in this example is how we can detect the delay parameter d, 
namely by using the phase- spectrum <p12(h): if there is a time delay the phase-spectrum 
is a linear function of the frequencies , and the slope of this linear function is the order of 
magnitude for the time delay. 

6.7 Estimation of the cross-spectrum 

Let us for simplicity of notation consider a two- dimensional time series X t = (Xtl , X t2 )'. 

All arguments presented immediately carries over to higher order models. 
Given observations Xl, ... , X n . Then the periodogram In is defined by 

n-l 

In(wj) = L: F(k)e- ikw
" 

k;-(n-l) 

where Wj = 27rj In is any non-zero (Fourier) frequency. As in the univariate case, the 
periodogram is simply defined as the spectral density by replacing r by its estimator. 

The periodogram is, again, a poor estimator for the spectral density, and it may be 
desirerable to smooth the periodogram with a lag- window to obtain a consistent estimator 
(i.e. an estimator that converges to the true spectral density function as the number of 
data increases to infinity). There is no reason, however, that the lag-window fQr two 
marginal processes should be chosen to be the same, or that the lag-window for the 
cross-spectrum should coincide with any of the lag- windows from the marginal processes. 
One should choose the lag-window such that it is useful for the purpose we consider. For 
example, if we consider the problem of estimating the coherency or phase- spectrum, then 
we should only be concerned with choosing a lag-window that is useful for smoothing 
the cross- spectrum, and if we are only interested in the marginal spectra we may need to 
estimate possibly twice with two different lag- windows, each of one useful for one of the 
marginals. 
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Suppose that we have chosen a lag-window >'n(s) useful for our purposes. Then we 
estimate the spectral density by 

The theory for multivariate spectral analysis now basically follows the same track as for 
univariate spectral analysis, and the practical considerations are the same. We refer to 
the univariate theory for more practical details. 

Notice that since r(h) = r(-h)' we have that hn (>') and h21(>') are complex conju­
gates. This implies that the real part of h can be written as 

and the negative of the imaginary part as 

Q12(W) = -Imh = ii(h12(Wj) - h21 (Wj)). 

We will use these relations to estimate en and Q12 simply be replacing the cross-sepctral 
densities by their estimators. 

The amplitude spectrum can now be estimated by 

a12(wj) = VC12(Wj)2 + Q12(Wj)2 . 

The phase-sepctrum is estimated by 

Last, the complex coherency is straighforward to estimate replacing the spectra by its 
estimated spectra in the expression for the complex coherency. For estimation of the 
absolute coherency, or only coherency, we use 

Approximate 95 % confidence intervals are given by the following formulae. Let 

an = L: >'n(k)2, 
Ikl!>m 

where m is the truncation point of the lag-window, i.e. the largest integer for which the 
lag-window is different from zero. 
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The phase-spectrum has confidence limits 

The confidence interval for the coherence is 

If the lag- window is the truncated window with 

for Ikl $ m, and 0 otherwise, we can test for independence in the following way. The 
null hypothesis is IW!2(W)1 = 0 and the alternative Iwn(w)1 > O. The null hypothesis is 
accepted at level a if 

6.8 Transfer function modelling 

The considerations in the previous section naturally leads to considerations about the 
possibility of expressing one time series as a linear combination of another , using the 
qoss spectral properties. In this section we consider a special class of such models which 
are called transfer function models. 

6.8.1 Basic formulation and analysis 

Let {Xu} and {Xt2 } be zero mean stationary processes , and suppose they are related by 

00 

X'2 = L tjX,_j,! + Nt. 
j;::;::O 

(6.3) 

where {N,} is the noise processes, assumed to be a zero mean stationary time series, and 
un correlated with Xu. Then the process Xn serves as input process and X t2 serves as 
output process. 

The objective of our analysis is to determine the coefficients tj, j = 0,1, ... alld the 
noise processes N, for given data Xtl and X'2 . To determine the noise process is easy if we 
know the coefficients, since it is simply a residual process between X" and a linear filter 
applied to X t2 . Thus the whole problem basically boils down to calculating/estimating 
the coefficients t j. 
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Multiply (6.3) by X t - k •1 and obtain 

00 

X t2 X t_k., = L tjXt-j.,Xt-k.l + NtXt-k.,. 
j=O 

Since Xtl and Nt are uncorrelated we get 

IE(NtXt-k.,) IE(Nt)IE(Xt_k.1 ) 

= 0 

by the zero means assumption. Thus taking expectations in (6.4) yields 

00 

'"/21(k) = L tj'"/l1(k - j). 
j=O 

(6.4) 

(6.5) 

To estimate the t/s from this equation would require precise estimation of the ,"/l1(k) 
for all k. This is an unnecessary complication, and instead we use the concept of pre­
whitening the input series Xtl' For if Xtl were indeed a white noise process the right 
hand side of (6.5) boils down to tkO"i, where O"i is the variance of Xtl' 

Suppose Xtl is given by an ARMA(p,q) model, 

q,(B)Xtl = fJ(B)Zt 

where Zt is a white noise process with zero mean and variance O"k. Define the filter 7r(B) 
by 

7r(B) = fJ(Bt'q,(B) = q,(B)fJ(Bt'. 

Applying this filter to Xtl will prewhiten the process. Indeed from q,(B)Xtl = fJ(B)Zt we 
have that q,(B)O(Btl Xtl = Zt or 7r(B)Xtl = Zt. The method looks alright in theory, but 
how do we in practice apply this (non-linear) filter to our input process? Quite simple: 
estimating the ARMA model in the usual manner will produce residuals which are the 
filtered process we are looking for. Let 1'; = 7r(B)Xt2 be the same filter applied to X'2' 
How do we do that in practice? Use the estimated ARMA coefficients of the X tl , 4>1, ... , ¢,p, 
0" ... , Oq to determine a process Z; such that 

Then 1'; = Z;. Another way of formulating this concept: use 4>t, ... ,4>p, O" ... ,Oq as ini­
tial values for the maximum likelihood estimation procedure, and apply the maximum 
likelihood estimation with 0 iterations, and calculate the residuals from this model. 
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Applying the filter 7r(B) to Nt, 'using 'similar methods as above, results in a new 
stationary process N;. Thus after applying the filter 7r(B) to (6.3) we get the equation 

00 

Yl = L:tjZ,- j + N;. 
j~O 

From this equation we can easily calculate the coeffcients by multiplying both sides of the 
equation with Yl-k and taking expectations. We get that 

Now 

so 

tk = pyz(k)oy/oz. 

To use the cross- correlation functions has the following practical advantage. If we plot 
Py z(k) against the confidence limits ±1.96/ fo then we can get a first impression of which 
tj are zero and which are not. Note that tj = 0 if and only if pyz(j) = O. The non-zero 
values are then estimated by 

tj = pyz(j)8y/fTz. 

For non-signinficant values of pyz(j) we put tj = 0, and force the parameters at such lags 
to remain zero. The smallest value such that Py z( h) is non- zero, b, is called the delay 
parameter of the filter {t j }, and the largest such value, the order of the transfer model , 
is denoted by m. Now we have classified significant and non- significant values of tj, and 
we have proposed some preliminary estimators for these values. By this ends our use of 
the prewhitened series, and we return to our original stationary series Xtl and X t2 · 

We proceed by analysing the noise process Nt, which we extract by 

m 

Nt = Xn - L: tjX'_ j ,I ' 
j~b 

Then fit an ARMA model to the noise process Nt to obtain 

(6.6) 

<p(N)(B)N, = O(N)(B)Wt , (6.7) 

where {W.} is a white noise process with zero mean and variance o~ . This fit will be 
used when we specify our final model in the following section. 
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6.8.2 Parameter reduction and extention of the model 

Let T(B) = Lj:b tjBj. Then from (6.6) and (6.7) it follows that 

(6.8) 

Here T(B) = Bb(tb + tb+IB + ... + tmBm-b) is a simple polynomial. If m is large (say 
arround 7- 8 and up) we may succesfully apply an approximation to T of an rational 
function with fewer parameters. In the final formulation of our model we will extend T 
to be on the form 

T(B) = Bb WO + wIB + ... + w,B' = BbW(B). 
1 - vIB - ... - v,B' v(B) 

This function of course has as special case the polynomial form of T by choosing t = 0 
and Wi = t i+b. If the sequence of ij s decay approximately like 

for j ~ b then we may choose 
T(B) = Wo Bb 

1- vlB 

A ppropriate values for Wo and VI are found using the first two preliminary estimates of 
Ij . 

Using the extended function T and dividing through by ¢,(Nl(B) in (6.8) we get that 

x - Bb WO + wIB + ... + w,B' X (}(Nl(B) W 
'2 - 1 _ vIB _ ... _ v,Bt tl + 1>(Nl(B) t· (6.9) 

This model will serve as our model specification for our tansfer model. Thus in order to 
chose the rational function 

Bb Wo + wIB + ... + w,B' 
1 - vIB - ... - VtB' 

we use the preliminary estimates of ij , with the possibility of choosing a polynomial (t = 
0) , which coincides with the original and exact model formulation. Choosing a rational 
function (I > 0) will only serve as an approximation to a higher order polynomial. Note 
that if we use a polynomial approximation, m is no longer well defined (it is significantly 
larger than 0 for all lags) and we put m = max(s + b, t). 

More advanced, if the series Ij satisfies the difference equation 

(6.10) 
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then T is well approximated by 

T(B) = wOBb . 
1 - v,B - ... - v,B' 

Whether the tj s satisfies a difference equation like (6.10) may be difficult to check in 
practice, but a possibility could be to estimate an AR process with small white noise 
variance and use the estimates of the parameters as the coefficients v"~ ... , V,. The order t 
should as well be estimated by the AICC criterion applied to the series ij . 

Now we have specified parameters for all entries in the model (6.9), and we will 
use these parameters as preliminary estimates for initiating a least squares fit to the 
model. The least squares procedure will optimize the parameters ij. Then calculate a 
new residual noise process Nt using these optimized coefficients, and fit an ARMA model 
to these residuals. If the order of the ARMA model is the same as before we have finished; 
if not, fit a new ARMA model with different orders, and repeat the least squares fitting 
with the new polynomial 4,(N) and O(N) included in the model (6.9). Continue in this way 
until the order of ARMA model fitted to the residual noise process we obtain from the 
optimized parameters is the same as the order of the previous fitted ARMA model. 

Diagnostics for transfer function models simply consists of checking the appropriate­
ness of all ARMA models estimated using the usual diagnostic techniques, and to check 
for uncorrelatedness between Wt and the input series. This is done by plotting the cross­
correlations between W, and the prewhitened input process, i.e. between W, and the 
residuals of the input process from its ARMA estimation. If uncorrelated the values of 
the cross-correlation should be insignificant. 

6.9 Intervention analysis 

Intervention analysis is an important application of transfer models to univariate data 
that contain an obvious change of level at a certain poi nt. Such data will never appear 
stationary becuase of the change of level, and even though we can model the data in the 
following way. 

Suppose the data are X t and that there is an obvious change of level at time t = c. By 
applying the usual techniques to the data to obtain stationarity, the most we can hope 
for is to obtain two stationary series that are stationary before time c and after time c. 
The full series will never appear stationary. 

Construct a series Y, that is 0 if t < c and 1 if t :::0: c. Consider the transfer function 
model 

X, =aY,+N,. 

We may think of N, as the original series X, without a change of level at time c. The 
term aY, compensates for the change of level, since it adds the constant a for all values of 
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t 2: c. When applying stationarity transformations to X" in order to obtain two stationary 
sequences (one up to time c and after time c), we apply the same operations to the right 
hand side. If the difference operator V is involved we see that Yt reduces to a series 
which is zero everywhere but for one or two values (two values if an operator V k, k > 1 
has been applied as well to remove e.g. a seasonal component). When differencing the 
level-changing series, we obtain two series with equal fluctuations, but in the changing 
point there will be a heavy fluctuation. 

Thus we may describe our transfer model in terms of stationary series as 

XtJ = aYt1 + N tl , 

where X tl is the series X, after stationarity transformations, and Yt1 and Ntl the series 
corresponding to Yt and Nt after the same stationarity transformations. The interpreta­
tion of this equation is the following: NtJ corresponds to a stationary sequence without a 
heavy fluctuation at t = c. But by adding a only at this value t = c we can simulate this 
"boost" and apply standard transfer modelling to the data. The only other alternative 
would be to throwaway the data before time c, and this is obviously not recomendable 
since the data before time c contain equally valid information on the process, as the points 
after c. 

One may ask whether the analysis is valid , since the input process is obviously not a 
random process, and can hardly, at least from an outstanding point of view, be regarded 
as stationary. These points of critics are indeed valid, and the only argument in our favor 
is that the procedure works fine in practice. We can actually estimate an MA(l) or AR(l) 
with 1/>1 = 0 or 81 = 0 and a small variance to the differenced data of Yt (at least if V has 
been involved, and there are only on point different from 0). 

If there are more than one level changing we may a apply a transfer model that 
contains as many non-zero t;'s as there are level changes in the data. Then every non­
zero tj corresponds to a "heavy" fluctuation occuring at some point. 
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Bibliography 

The reader who whishes to aquintain himself with further details and proofs for the 
material presented in these notes may consult Priestly (1981), Brockwell & Davis (1991) 
and Anderson (1971). Priestley (1981) provides an excellent treatment of the spectral 
analysis problems involved in time series analysis, and provide many useful practical 
hints. Brockwell and Davis (1991) is a more theoretical exposition, but very readable 
and much recommended for the reader who wants to put the theory of time series into 
a more mathematical frame, such as Hilbert spaces. Anderson (1971) is a classic book 
which for that reason still serves as a reference. It is also worth mentioning Brillinger 
(1981) and Hannan (1970). For further references, in particular to articles and specialized 
expositions, see references in Priestley (1981) or Brockwell & Davis (1991) . Finally, for a 
discussion on prediction methods, see Makridakis et al. (1984). 
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