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ABSTRACT 

OMNIBUS TESTS FOR MULTIVARIATE NORMALITY 
OF OBSERVATIONS AND RESIDUALS 

This paper provides an omnibus test for mUltivariate normality of 
both observations and residuals. It is derived by considering as 
the alternatives to the mUltivariate normal a class of maximum­
entropy distributions studied elsewhere by the author. The test, 
being a Lagrange multiplier statistic, has optimum local 
asymptotic power among those alternatives. Furthermore, it 
coincides in the univariate case with the popular Bera-Jarque 
(Bowman-Shenton) test for normality. It also includes as special 
cases several mUltivariate tests available in the literature. 
Finally, the paper also suggests simple adjustments that can 
significantly improve the test in the case of small and medium 
size samples, even for the univariate case. 

"KEY WORDS: Tests for Multivariate Normality, Maximum Entropy. 
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I. INTRODUCTION 

since the pioneering work earlier this century by, among others, 

K. Pearson, R. Fisher and J. Wishart, the assumption of 

mUltivariate normality has played a key role in many methods of 

mUltivariate analysis. Handy as that assumption is, however, the 

consequences of departure from mUltivariate normality are 

documented to be quite serious for several methods (e.g., linear 

discriminant analysis). Judgment still awaits in the case of 

other methods, but, in principle, the consequences could be 

serious as well. This can be surmised in cases such as 

simultaneous equation models, where the violation of the 

mUltivariate normality assumption may lead to inefficient 

. estimators and invalid inferences. 

Given the obvious importance of the mUltivariate normality 

assumption, it is thus somewhat surprising that for many years 

most researchers either ignored it, or were contented with the 

evaluation of marginal normality (which, of course, does not 

necessarily imply joint normality). Only when Mardia (1970) 

introduced a simple test based on mUltivariate measures of 

skewness and kurtosis, the issue of testing for mUltivariate 

normality gained some favor among researchers. That this favor 

has grown since then can be attested by the burgeoning current 

literature on the subject (see, e.g., the surveys by Mardia, 

1987, and Small, 1985). 

The purpose of this paper is to provide readily computable 
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tests for multivariate normality of both observations and 

residuals of multivariate equation models. They are derived by 

considering as the alternatives to the mUltivariate normal a 

class of "likely", maximum entropy, multivariate distributions 

introduced in Urz~a (1988). 

The tests, by being derived using the Lagrange multiplier 

procedure, have optimum locally asymptotic power among those 

alternatives. Thus, they distinguish themselves from other ad-hoc 

tests in the literature that are simply patterned as extensions 

of tests for univariate normality. This is not meant to deny the 

practical advantage of having multivariate tests with such 

property, for in fact the tests proposed here are the 

mUltivariate counterparts to the popular Jarque-Bera test for 

univariate normality (Jarque and Bera, 1980 and 1987). The paper 

also presents simple adjustments to the LM tests that can 

significantly improve its performance in the case of small and 

medium size samples, even for the univariate case. 

The paper is organized as follows: section 2 reviews several 

of the properties that characterize the "likely" mUltivariate 

distributions, and presents some basic results for use in later 

sections. Section 3 derives the Lagrange multiplier test for 

mUltivariate normality under the premise that the alternatives to 

the normal are other maximum entropy distributions. It also 

corrects the test to improve its performance in the case of non­

large samples. Finally, section 4 presents test statistics for 

mUltivariate normality of residuals of simultaneous equation 

models, and of vector autoregression models for time series. 
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xx. LXXELY ALTERNATXVE8 TO THB 'HULTXVARXATB NORMAL 

Xn his authoritative paper on significance tests written in the 

seventies, D. R. Cox complained about the non existence of "a 

simple and general family of distributions to serve as 

alternatives [to the mUltivariate normal)" (1977, p. 56). This 

section reviews a class of distributions, an exponential family 

studied in Urzua (1988), that could play that role. 

A. 80me Definitions 

The distributions to be considered in this paper are 

multivariate generalizations of the, still now, relatively 

unknown distributions introduced by R. A. Fisher (1922). Defined 

over the real line, Fisher's univariate densities are of the form 

f(x) = T(a)exp(-Q(x», Q(x) = alx+a~+ ... +a~, (2.1) 

where k is an even number, at > 0, and T(a) is the constant of 

normalization given the vector of parameters a. Aside of course 

from the normal (obtained when k = 2), the densities in (2.1) 

were considered to be of little interest for many years. More 

recently, however, there has been an increasing interest on them 

since they play a key role in stochastic catastrophe theory (see 

Urzua, 1990, and references therein). 

Furthermore, as Zellner and Highfield (1988) have strikingly 

illustrated in the case of the quartic exponential (obtained 

setting k = 4 in equation (2.1) above), Fisher's distributions 

are flexible enough, and simple enough, to act as bona fide 
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, ... 

approximations to other univariate distributions. 

We now turn to their mUltivariate counterparts. Let z denote 

the real column vector (xl, .•• ,x,)'. If Q(z) is a polynomial of 

degree k in the p variables, then it can always be written, 

ignoring the constant term, as 

k 
Q(z) = E Q(q)(x), 

q-1 
(2.2) 

where Q(q)(z) is a homogeneous polynomial (a form) of degree q. 

Namely, 

E a(q) 
j , •.. j. 

P ji 
II Xi , 
i=l 

(2.3) 

with the summation taken over all nonnegative integer p-tuples 

(jl, ••• ,j,) such that jl+ ••• +j, = q. The polynomial Q will be 

assumed to be such that g(x) = exp(-Q(x» is integrable on the 

entire Euclidean space a' (a necessary condition for this to 

happen is that the degree of Q(x) relative to each Xi is an even 

integer) • 

Following Urz~a (1988), the continuous random vector X = 

(XI""'Xp) is said to have a p-variate Q-exponential distribution 

with support a' if its density is given by 

l' (x) = T (a) exp (-Q (x) ) , -00 < Xi < co, i = 1, ... , p, (2.4) 

where T(a) is the constant of normalization. 

For simplicity, it will be implicitly assumed below that the 

polynomial Q is of degree k relative to all of its components. In 
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SU9h a case, several important distributions emerge: If k = 2, 

then the p-variate normal is obtained; while when k = 4 and k = 6 

the p-variate quartic and sextic exponentials are obtained. 

Note also that as k is increased the number of coefficients 

required by the corresponding Q-exponential increases at an 

increasing rate. In fact, as can be readily shown (see Urzda, 

1988, if K(p,k) denotes the maximum possible number of parameters 

of a p-variate Q-exponential, then 

K(p,k) = C(p+k,k)-l, (2.5) 

where C(P+k,k) is the binomial coefficient (P+k)!/(plkl) . In 

particular, the number of possible coefficients in the 

homogeneous polynomial of degree q given in (2.3) is C(P+q-1,q). 

B. So •• Characterisations 

It is now time to introduce a key characteristic of the Q­

exponential distributions. Consider all densities f relative to 

Lebesgue measure that have support n = RP and have finite 

population moments of some predetermined orders. That is, they 

satisfy constraints of the form 

P j .. 
E{ II Xi } = coo, m = 1, ••• ,r, 

i-1 

where each J. is a nonnegative integer, and c., ••• ,c, is a 

(2.6) 

sequence of real numbers. For each density we define, following 

Shannon (1948), the entropy of f as 

H(f) = -In f(x)log[f(x)]dx. 

5 



It can be shown (see Urzua, 1988) that, among the densities 

satisfying (2.6), if there is a density that maximizes Shannon's 

entropy, it is necessarily a O-exponential of the form 

fez) = T(a)exp(-O(z», with O(z) = 

For instance, the p-variate quartic exponential maximizes the 

entropy among the distributions with support RP that are known to 

have finite moments up to order four. Likewise, as Shannon (1948) 

in his influential paper first proved, the mUltivariate normal 

maximizes the entropy among the distributions that have second 

order moments. 

Thus, when the only known information about a distribution is 

the existence of population moments of some orders, the 0-

exponentials can be considered to be the "most likely to be 

true". This according to the maximum entropy principle, which 

states that "in making inferences on the basis of partial 

information we must use that probability distribution which has 

maximum entropy subject to whatever is known" (Jaynes, 1957, .p. 

623). This principle, as remarked by Klir and Folger (1988, p. 

214), can be rephrased using the following two sentences of the 

Chinese philosopher Lao Tsu (who lived in the sixth century 

B.C.): "Knowing ignora~ce is strength. Ignoring knowledge is 

sickness." 

There is a second characteristic of the O-exponentials that 

is also relevant for our purposes. It can be shown that, near the 

mUltivariate normal, the quartic exponential is capable of 
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approximating as close as needed the, van Uven-steyn mUltivariate 

Pearson family (see Urzua, 1988). This is interesting because the 

latter family, although made of distributions more complex (and 

suspect) than the Q-exponentials, could be thought by some to 

constitute a ciass of possible alternatives to mUltivariate 

normality (in fact, Bera and John, 1983, have used such a family 

to derive tests for multivariate normality). 

Before concluding this section, it is worth briefly 

mentioning other interesting properties exhibited by the Q­

exponential distributions that, although not directly relevant 

for this paper, help to illustrate furthermore the generality of 

the distributions (see Urzua, 1988, for details): First, they can 

exhibit several modes, and they do so with a relatively small 

number of parameters (as compared to mixtures of multinormals). 

· Second, they are the stationary distributions of certain 

mUltivariate diffusion processes. Third, the Maximum Likelihood 

(ML) estimators of their population moments are the sample 

moments (as can be directly seen from (3.2) below). And fourth, 

using the method of moments one can easily obtain consistent 

estimators for the parameters of the Q-exponential distributions. 

This last result is particularly useful given the large number of 

parameters in the case of high-dimension distributions. 

III. TESTS POR MULTIVARIATE NORMALITY OP OBSERVATIONS 

Let X be a pX1 random vector following a Q-exponential 

distribution. Consider a set of n observations {xl, ••• ,x.} on X. 
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The corresponding log-likelihood function L(a) can then be easily 

shown to be 

~ ~ n 
L(a) = -nlog[L ... ··L~exp(-Q(X»dXl - 1: Q(x,). 

r-l 
(3.1) 

Furthermore, the components of the gradient (score) of L(a) 

are of the form 

n 
- 1: 

r=l 

p j; 
II x;, , 
i=l 

while the elements of the Hessian of L(a) are of the form 

P j;+k; p j; p k; 
-nE{ II X; } + nE{ II X; }E{ II X; }. 

i-l i=l i-1 

(3.2) 

(3.3) 

Consequently, Fisher's information matrix is simply made of the 

covariances of products of the random components multiplied by n. 

It will prove useful to transform the random vector X to a 

vector Y having zero mean and the identity matrix as the 

covariance. Let ~ and E be the mean vector and the covariance 

matrix of X. Let r denote the orthogonal matrix whose columns are 

the standardized eigenvectors of E, and A denote the diagonal 

matrix of the eigenvalues of E. Define E-11'2 as the inverse of the 

square root decomposition of E; that is, E-11'2 = rA-1I'2r ,. Then the 

random vector 

(3.4) 

follows a p-variate Q-exponential, with Q(y) as in (2 . 2) and 

Q~(Y) as in (2.3). It has a zero mean vector, and an identity 

matrix as its covariance matrix. 
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Let the . K(p,k)x1 vector of parameters of O(y) be denoted as ~ 

where K(p,k) is given in (2.5) above. Suppose now that ais 

partitioned as a = (',','2')', where " is the C(p+1,2)X1 vector 

of parameters of the homogeneous polynomial Om(y). The 

hypothesis of multinormality can be then assessed by testing the 

null hypothesis Ho: '2 = O. There are several asymptotic tests 

available for that purpose (see, e.g., the survey by Engle, 

1984). Given the complexity of the alternatives considered here, 

the Lagrange multiplier (LM) test of Rao (1948), and Aitchison 

and Silvey (1958) will be used below, for it only requires the 

estimation of the restricted model under the null hypothesis. 

A. The Laqranqe Multiplier Test 

In order to give an expression for the LM statistic, it is 

necessary to introduce some notation. Let s(a) be the gradient , 

(score) of the log-likelihood function, and let I be the 

information matrix. Given the partition of a as ('(,'I)' the 

score can be written as 8(a) = (sr,s!>', with Sj = (jL(a)/(j,i' j = 

1,2; while the information matrix can be partitioned into four 

submatrices of the form l;j = E{-il2L(a)/il8;iJ'P, i,j = 1,2. 

Let ('1,0) denote the restricted maximum likelihood estimator 

for a = ('(,'I)'; that is, " is the maximum likelihood estimator 

for " after imposing the constraint '2 = O. Let also a = 8('-,,0) 

and i '" 1(',,0). Then the LM statistic is defined as LM = ai-'a/n, 

or, taking advantage of the fact that i, = 0, 

LM= (3.5) 
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LX is under Ho asymptotically distributed as a x~, a Chi-square 

with degrees of freedom v equal to the dimension of the vector 

'2· 

B. A Test for Multivariate Normality of Observations 

Given the complexity of the alternatives to the mUltivariate 

normal to be considered here, the computation of the LX statistic 

would appear to be a daunting task. Fortunately, as it will be 

seen soon, that will not be the case. 

In what follows we will assume that the quartic exponential 

is the alternative distribution to the mUltivariate normal. This 

is enough since, as noted earlier, (i) it is the "most likely" 

distribution when moments up to the fourth order are assumed to 

exist, and (ii) near the multivariate normal, it can approximate 

as close as needed the multivariate Pearson family. Furthermore, 

the results given below can be trivially extended to all possible 

Q-exponentials. 1 

Before finding the LX test statistic, it is convenient to 

introduce some more notation. Let us first transform the original 

observations on X: Let X and S be the sample mean vector and the 

sample variance-covariance matrix found using the set of 

observations {XI, ••• ,x.}. Let G denote the orthogonal matrix whose 

columns are the standardized eigenvectors of S, and D denote the 

diagonal matrix of the eigenvalues. Using S-In = GD-lnG', transform 

the observations as follows: 

y, = S·1n (x. -x) , t = 1, ••• , n • (3.6) 
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After defining 

n 
Qijt = E y.;}',.y.,.! n 

tal 

n 
and Rijkq = E y.;}',.y.,y ... /n, 

tal 

the main result of the paper can be now stated as follows: 

Proposition 1. Under the above conditions, the Lagrange 

multiplier test statistic for multivariate normality of 

observations is given by: 

p 

= n[ E Q~./6 
i-l 

p 

p 

+ E Q~ij/2 + 
i,j-l 
i;i!j 

p 

p 

E Q~jk + 
i,j,k-l 
i<j<k 

p 

E (Rw;-3)1/24 + 
i=l 

p p 

(3.7) 

1: (R.jj-l)2/4 + 
i, j-l 

1: W;./6 + E R~ijk/2 + 1: W;jkq) , 

i<j 
i, j-l 

i;i<!j 
i,j,k-l .i,j,k,q-l 

~j,i¢k,j<k i<j<k<q 

where the statistic ~ is asymptotically distributed as a x~, 

with ~ = p(P+l) (P+2) (P+7)/24. 

since the proof of the proposition, although conceptually 

simple, is messy, it is relegated to the Appendix. Yet, the 

interpretation of the test is quite straightforward: It is an 

omnibus test involving all possible third and fourth moments 

(pure and mixed). Furthermore, it is constructed in the obvious 

way: Summing the squares of standardized normals (under the 

nUll), after using in each standardization the corresponding 

asymptotic mean and variance (the asymptotic covariance between 

any two terms in the expression is zero). For instance, each 

element in the first summation has zero mean and an asymptotic 

variance of 6/n (see sUbsection C below for more examples). 
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It should also be noted that another justification of 

Proposition 1 may be given indirectly through an elegant result 

derived by Gart and Tarone (1983) for all exponential families. 

For any family of that type, the corresponding likelihood has to 

be of the form T(p,Q)exp(p'u + Q'v)h(u,v), where u = (ul, ••• ,u,)' 

and v = (vl, ••• ,v,)' are sufficient statistics, and P and Q are 

the parameters of the distribution. Then, following those 

authors, it can be shown that the Lagrange multiplier (score) 

test for the null hypothesis Ho: P = Po is simply given by the 

statistic 

LM = (u - E{ulv}) 'var{ulv}"l(u - E{ulv}) (3.8) 

where E{UIV} and Var{ulv} are the asymptotic conditional mean and 

variance matrix of u given v, under the null. 

In our case the vector of sufficient statistics v is given by 

all possible second order moments, while u is made of all 

possible third and fourth moments. (and first moments, but their 

contribution vanishes as shown in the first step of the proof in 

the Appendix). Thus, using (3.8), Proposition 1 is justified. 2 

C. Some special Cases of the ~ Test 

The LM statistic derived above includes as special cases 

several tests for multivariate normality that have been proposed 

in the literature. 

To start with, in the univariate case the LMI statistic can be 

expressed in terms of the standardized third and fourth moments 

of the original observations. Defining Vbl = m3/m~n and b 2 = m4/m~, 
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where the i-th central moment mi equals 'E(Xj-X)i/n , then the test 

becomes: 

(3.9) 

This statistic has been proposed by Bowman and Shenton (1975), 

and by Jarque and Bera (1980 and 1987). The former authors 

suggested the use of this statistic as the simplest possible 

omnibus test for normality since, under the null, the asymptotic 

means of vlb. and b2 are respectively 0 and 3, their asymptotic 

variances are G/n and 24/n, and their asymptotic covariance is 

zero. While the latter authors found (3.9) to be the LM test 

statistic obtained when the alternatives to normality are in the 

Pearson family. 

In the more general multivariate case, the omnibus ~ 

statistic contains as special cases several tests already 

available in the literature. Independently, Bera and John (1983) 

and LUtkepohl and Theilen (1991) have considered the possibility 

of using as tests for mUltivariate normality the sum of squares 

of the standardized pure third and fourth moments. That is, the 

terms in the first and fourth summation signs appearing in the 

expression for ~ in Proposition 1. Bera and 'John have also 

considered the possibility of using the mixed fourth moments that 

are obtained multiplying the squares of any pair of components 

(i.e., the elements in the fifth summation sign appearing in 

~). 

It is also interesting to note that the omnibus ~ test (or 

some of its components) somewhat resembles the omnibus tests 
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proposed by Jarque and McKenzie (1983) and Mardia and Kent (1991) 

using Mardia's measures of mUltivariate skewness and kurtosis. 

Note, however, that Mardia's statistics are not derived after 

orthoqonalizing the observations, but rather after using 

quadratic forms of the type (z,-x) a-I (z,.-x) • 

D. A4juate4 Lagrange Multiplier Teata 

Given the very large number of degrees of freedom of the ~ 

statistic in Proposition 1, it should not be a surprise to learn 

that the author has found, after a few Montecarlo exercises, that 

it does not behave well for small and medium size samples (with 

the problem getting worse as p is increased).3 Although for large 

samples, of course, the hypothesis of p-variate normality of 

observations can be safely reje9ted at some significant level 

(usually taken to be 10%) if the value of ~ exceeds the 

corresponding critical value of the X~. 

To solve that shortcoming, this subsection presents simpler 

test statistics made of some of the elements of ~i most of 

those test statistics, by the way, will continue to be LM tests, 

since they would arise after choosing some particular quartic 

exponentials. Furthermore, and more interestingly, this 

sUbsection will also show how to adjust those LM tests to 

substantially improve their asymptotic convergence . 

Let us start first with the univariate case. As noted 

earlier, LMI is no other than the popular Bowman-Shenton-Jarque­

Bera omnibus test given in (3.9) above. It is important to 

realize, however, that even for such a simple functional form the 
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speed of convergence to the x2 is quite slow (something that is 
2 

often ignored when the test is used in applied econometrics). 

Luckily enough, there is a very simple adjustment that can be 

used to improve its convergence. First note that, based on a 

straightforward extension of a result in Fisher (1930), it is 

possible to derive exactly the means and variances of ,lb. and b2 

under normality (the null). As in the asymptotic case, E~b.} = 

0, but for the other mean and for the two variances it can be 

easily shown (see Urzua 1995) that the exact values are: 

E{b2} = 3(n-1)/(n+1), var~b.} = 6(n-2)/(n+1) (n+3), 

var{b2 } = 24n(n-2) (n-3) / (n+1)2(n+3) (n+5). (3.10) 

Thus, as it was first suggested in Urzua (1995), we can now 

SUbstitute the asymptotic values for the exact values to obtain a 

"new adjusted LM. statistic, with the hope of speeding up the 

convergence of the omnibus test: 

(3.11) 

It is shown in Urzua (1995) that this new adjusted LM test 

indeed behaves better in the case of small and medium size 

samples. Furthermore, it is also shown there that the power of 

the new test is even slightly greater than the power of the 

Bowman-Shenton-Jarque-Bera test statistics. 

Given those encouraging results, it is natural to consider 

also in this paper the individual counterparts to the omnibus 

univariate test ALM1• That is, using the same adjustments as 

before, let us now introduce an adjusted skewness measure test 
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defined as 

(3.12) 

and, likewise, an adjusted kurtosis measure test defined as 

(3.13 ) 

Note that (3.13) could be truly derived as a Lagrange multiplier 

test in the case of a quartic exponential without a cubic term, 

while (3.12) could not be (since the corresponding cubic 

exponential would not exist). But for purposes of consistency of 

notation, all the tests in this paper are called LM tests. 

We now turn to the mUltivariate case. In order to reduce the 

number of degrees of freedom that are present in the general ~ 

test given in Proposition 1, it is natural to focus only on the 

pure third and fourth moments. Although, of course, there is no 

reason a priori for preferring the pure moments over some mixed 

moments, and future work will try to explore other combinations. 

Hence, using (3.7) and (3.10), an adjusted LM omnibus test 

for mUltivariate normality of observations will be defined as: 

P A 

E (Rilii - E{b2})2/var{b2} 
i=l 

(3.14) 

Also, generalizing the univariate case, we can define the 

adjusted skewness measure test as 

A 
(3.15 ) 
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and the adjusted kurtosis measure test as 

(3 . 16 ) 

In the case of each of these three statistics, Table 1 

reports significance points for the typical confidence levels 

used to test for multivariate normality of observations~ Each 

cell in the table was generated through 10000 replications from a 

mUltivariate standard normal. 

The results, as they can be appreciated from the table, are 

quite encouraging. It is notable, for instance, how near to the 

corresponding asymptotic value are the generated critical values 

for the skewness-based test ALM"p when a = 10%, even for rather 

small sample sizes. As it will be noted in the next section, this 

fact should encourage the use of this test in the case of 

residuals of statistical models. 

Comparatively, the kurtosis-based test ALM2,p' converges more 

slowly, but its behavior is still quite remarkable given the well 

known bad convergence properties of the typical, unadjusted, 

statistics based on fourth moments. 

Finally, the omnibus test ALM., the one that in principle 

should have the best power (although this issue will have to be 

answered in future work), also behaves quite well (compare, for 

instance, the critical values for p = 1 with the corresponding 

values for the Jarque-Bera test for univariate normality (Jarque 

and Bera, 1987, Table 2). 
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IV. TESTS FOR MULTIVARIATE NORMALITY OF RESIDUALS 

The tests for mUltivariate normality of observations introduced 

in the last section can be easily extended, as we will do next, 

to the case of residuals of the typical linear structural models 

used in Economics. What cannot be borrowed from the last section, 

however, are the significance points in Table 1. This is so 

because the sample properties of the tests will depend in general 

on the particular design matrices of each structural model. It is 

for this same reason that in what follows we restrict our 

attention to the adjusted ALM tests, rather than considering the 

general omnibus test ~ derived in Proposition 1. 

A. Simultaneous Equation Models 

Consider the simultaneous equation model 

By, + rz, = u" r=l, ... ,n, (4.1) 

where y, is a pXl vector of observed endogenous variables, z, is a 

kx1 vector of observed predetermined variables, u, is a pX1 

vector of unobserved disturbances, B is a pxp nonsingular matrix 

of coefficients with ones in its diagonal, and r is a pxk matrix 

of coefficients. All identities are assumed to be substituted 

out, and the system is assumed to be identified through 

exclusions in Band r. Assume furthermore that the alternative to 

the possible p-variate normal distribution of u, is, as before, a 

p-variate quartic exponential. 

Suppose first that the system is estimated using full 
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information maximum likelihood (FIML) under the assumption of 

multivariate normality. Following the reasoning in the last 

section, one can construct tests for multivariate normality of 

the residuals as follows: Let a, denote the estimated FIML 

residuals of the structural equations (one could similarly use 

the estimated residuals of the reduced form). Using the 

transformation e, = s-'I2U" where s-'12 is defined as in (3.6), 

'define · next: 

n 

V.. = E ebetje",.! n 
t-l 

n 

and W;jkq = E e.etje",e14/n. 
t-l 

Then the ALM's tests for mUltivariate normality of the residuals 

can be defined as: 

ALMR, = 
p P 
E V~ij/varr/b,} + E (Woo - E{b2}) 2/var{b2} 

i-l i=l 

P A 

ALMR"p = E Vfij/varr/b,} X2 
i=l 

p 

P A 

ALMR2,p = E (Woo - E{b2})2/var{b2} 
i=l 

A 

X2 
2p 

But, what if, as is usually the case, the system is not 

(4.2) 

(4.3) 

(4.4) 

estimated by FIML, but rather by some other method (e.g., 2SLS)? 

Provided the method renders consistent estimators, one can use 

the corresponding ALMR's constructed using the estimated 

residuals of the structural equations (or, equivalently, the 
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estimated residuals of the reduced form equations). This is so 

because, following White and MacDonald (1980), one can show that 

the statistics constructed using the estimated residuals are 

consistent estimators of the true statistics. 4 

As it was stressed earlier, in the case of small samples one 

cannot use the empirical significance points given in Table 1. 

But, as it was also noted earlier, the asymptotic critical values 

can be confidently used in the case of the ALMR.,p test. 

Furthermore, it is straightforward to simulate the significance 

points corresponding to the ALMR tests, for a given linear 

structural model. 

B. vector Autoregressive Models 

Before closing this section, it is interesting to posit the 

following question that arises in the case of mUltivariate time 

series that follow a vector autoregressive (VAR) process: In 

order to test for Gaussianity, should we use the original 

observations, or the estimated residuals after fitting the VAR 

model? Based on simulation studies, LUtkepohl and Theilen (1991) 

recommend the second alternative. Thus, in our context, tests 

based on the ALMR's rather than on the ALM's should be preferred. 

S. CONCLUSIONS AND EXTENSIONS 

This paper has provided an omnibus LM test for multivariate 

normality that is, in effect, the most comprehensive test that 

one can ever devise using third and fourth (pure and mixed) 
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moments. Being derived using the Lagrange multiplier procedure, 

the test has optimum local asymptotic power among the 

mUltivariate quartic exponentials; the maximum-entropy ("most 

likely") multivariate distributions when it is assumed that 

moments up to the fourth order exist. The paper has also provided 

some particular adjusted LM tests that converge quite fast to 

their asymptotic distribution. 

Three extensions to the results presented above are clearly 

called for. First, it is worth exploring the possibility of using 

another elements of ~, and comparing the power of the resulting 

tests with the ones for the ALM tests given here. Second, given 

the dozens of already available tests for multivariate normality, 

it is much needed a complete Montecarlo study appraising the 

power of each of them. And third, maintaining the hypothesis of 

"Q-exponentials as the alternative distributions, it should be 

interesting to derive new tests for mUltivariate normality of the 

residuals of other common multivariate models, such as 

simultaneous limited dependent variable models. 
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APPENDIX: PROOF OF PROPOSITION 1 

The proof will be developed in several steps, making continuous 

use of the expressions for the first and second partial 

derivatives of the log-likelihood given in (3.2) and (3.3), ' and 

reproduced here (q,r = 1,2,3,4): 

(A.1) 

P j;+ltj 
-nE{ II Y; } 

p j; p ltj 
+ nE{ II Y; } E{ II Y; }. (A.2) 

i=l i-1 i-1 

step 1: Note that, under the null, the elements of the score 

corresponding to the first order moments are zero: 

n 
aLI a,,(I) = nE{Y;} - 1:: y;. = 0, for each j; = 1-

j .... jp i=l 

Hence, the expression for the Lagrange multiplier statistic given 

in (3.5) can be further simplified as: 

(A. 3) 

where, the new symbols, all evaluated under the null, are given 

by: 

step 2: Since the components of the random vector Yare 

independent, and have, under the null, odd-order population 

moments equal to zero, it follows that the expression in (A.2) is 

equal to zero whenever q is even and r is odd, or viceversa. 
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Thus, all matrices in (A. 3) are block diagonal: " = diag ("I\1"n) , 

B - diag (BII' Bn), and C = diag (C1\1 Cn ) • 

step 3: In fact, B is a completely diagonal matrix. This is 
, 

so because all the elements of BII are zero except for: 

(A. 4) 

where the last equality obtains since, under the null, the second 

population moment of each component equals one. 

Most elements of Bn are zero as well, except for two possible 

arrangements of the subindices. The first case is: 

where in the second equality use has been made of the fact that, 

for a univariate standard normal, 

E{Y~} = (2t)! E{y~}t/2tt! t = 1,2 ••• (A.6) 

The second case arises when the left-hand side of (A.5) evaluated 

under the null becomes nE{Y~}E{Y:} = n, if j;=k;=l and j,=k,=l. 

step 4: The same procedure is used to find the elements of 

the matrices Cu's and "u's, although now there will be more non 

zero elements. As in the case of the Bu's, all elements will be 

found evaluating, under the null, expressions of the form (A.2) 

for different values of q and r, while also making frequent use 

of (A.6). Also, in what follows one should keep in mind that all 

matrices are symmetric, so that it suffices to list the entries 

on the diagonal and on, either, the upper or lower triangular 

parts. 
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In the case of Cu , obtained when q=l and r=3 (and viceversa) 

in (A.2), the non zero entries are equal to: 3n if jj=l and k j=3; 

and n if jj=kj=l and k.=2. 

In the case of Cn , arising when q=2 and r=4 (and viceversa) 

in (A.2), the non zero entries are equal to: 12n if jj=2 and kj=4; 

2n if jj=k;=2 and k.=2; n if j;=k;=l, j.=k.=l and k,=2; and 3n if j;=l, 

";=3 and j .=k.=l. 

In the case of Pu, resulting when q=3 and r=3 in (A.2), the 

non zero entries are equal to: 15n if j;=k;=3; 3n if j;=l, j.=2 and 

";=3, or if j;=k;=2 and j.=k.=l; and n if j;=k;=l, j.=k,=l and j,=k,=l, 

Dr if j;=k;=l, j,=2 and k,=2. 

Finally, in the case of Pn , obtained when q=4 and r=4 in 

(A. 2), the non zero entries are equal to: 96n if j;=kj=4; 12n if 

j;=j,=2 and k;=4; 15n if jj=kj=3 and j,=k,=l; 3n if j;=l, k j=3, j,=k,=l 

and j,=2, or if jj=kj=2, j,=k,=l and j,=k,=l; 9n if jj=3, k j=l, j,=l 

and k,=3; Bn if j;=k;=2 and j,=k,=2; 2n if j;=k;=2, j,=2 and k,=2; and 

n if j;=k j=l, j,=k,=l, j,=2 and k.=2, or if j;=k;=l, j,=k,=l, j,=k,=l and 

j.=k.=l. 

step 5: The elements of d in (A.3) are, on the other hand, 

easily found. They simply involve population moments, that can be 

evaluated using (A.6), and sample moments, which are the ones 

that will appear at the end in ~. 

step 6: Using the above results one can now display all the 

vectors and matrices in (A.3), and calculate directly (after some 

algebra) ~. The number of degrees of freedom of the Chi-square 

is simply equal to C(P+3,4)+C(p+2,3), following SUbsection II.A. 
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HOTES 

1 As noted in footnote 2. 

2 An analogous reasoning would apply if we had chosen to work 

with more general Q-exponentials. For instance, if the 

mUltivariate sextic exponential were to be considered as the 

likely alternative to the multivariate normal (and the quartic 

exponential), then the omnibus LM test would be made of quadratic 

terms involving all possible third, fourth, fifth and sixth 

moments (pure and mixed). 

3 The Montecarlo study is available upon request from the author. 

A 33-line procedure written in GAUSS to compute LM,. is also 

freely available upon request. 

4 Or one can also use a similar result to Proposition 3 in 

LUtkepohl and Theilen (1991). 
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TABLE 1 

Significance Points for the ALM Tests for Multivariate Normality of Observations 

ALM,p ALM" AlMp 
p n 0.90 0.95 0.975 0 .99 0.90 0.95 0.975 0.99 0.90 095 0.975 3-% 

10 2.70 414 56. 7.59 2.07 4.06 691 1129 4.12 779 12.32 16.61 

20 2.67 3.96 5.45 766 1.90 3.65 6.53 12.03 394 6 .. ,,25 16,59 

1 50 2.67 3.85 5.18 7.10 19. 326 5.51 10.00 390 642 9,33 15,56 

100 2.61 369 5.19 7.46 2.12 3.41 5.39 902 406 6 .13 9,02 1444 

200 2.63 3.83 5.07 662 2.31 3.50 544 6.51 4.21 6.07 ' .50 12.55 

BOO 267 3.85 488 6.35 2.47 362 4.97 7.23 4.39 5.90 7.64 1025 

~ 271 3.64 5.02 6.64 2.71 364 5.02 6.64 4.61 5.99 7.36 9.21 

10 477 6.42 '.04 9 .94 4.30 7.34 11.11 1562 8.65 13.36 1682 24.99 

20 479 6.34 8.21 10.64 4.22 7.23 11 .33 18.61 8.39 12.63 18.66 27.68 

2 50 4.64 6.34 7.93 10.41 4,07 6.60 10.62 18.08 7.63 1157 1696 26.17 

100 459 6.15 7.78 10.04 4.19 6.96 10.30 16.13 7.98 " .20 15.96 23.03 

200 455 610 777 10.15 4.42 640 9.36 1455 78. 1094 14.34 2142 

BOO 4.63 6.06 7.44 9.21 4.53 6,03 6.Q2 1198 7.85 10,00 12.56 16.35 

~ 4.61 5.99 738 9.21 4.61 5.99 7.38 9.21 7.78 9.49 11 .14 1328 

10 657 8.47 1028 12.69 6.ea 10.33 14.28 19.93 12.96 18.39 2394 3233 

20 649 8.46 10.27 13.14 6.24 10"a 14.96 2228 ".94 17.35 24.03 33.93 

3 50 6.38 8.33 10.42 13.23 6.01 9.63 14.20 22.34 11 .35 16.62 22.80 3348 

100 627 a.01 9.77 12.28 607 9.20 13.69 21.59 1112 15.24 21 .47 30.57 

200 6.27 7.78 9.50 " .82 613 ' .53 11 .80 17.67 11 .01 14.37 1853 24,14 

800 6.14 7.75 926 ".11 6 .34 829 10.55 14.75 10.83 1324 15.97 20.51 

~ 625 7.82 9.35 1135 6.25 7.82 935 11.35 1065 12.59 14.45 16.81 

10 8.17 1036 12.26 15.09 8.65 12.43 17.06 2320 16.27 22.32 28.83 3707 

20 8.07 10.36 1268 1558 867 13.04 1915 27.77 15.70 22.35 30.18 4082 

4 50 804 10.18 12.19 15.28 8.03 12.20 17.29 26.65 14.81 20.43 2749 39.50 

100 7.95 986 " .77 14.27 809 11 .68 15.92 24.45 14.69 19.16 24" 3401 

200 7.93 9.70 ,,42 1398 7.93 10.93 1529 21.53 1400 1821 23.03 3097 

BOO 7.81 9.57 1109 13.37 7.81 9.99 12.46 16.03 13.56 16.30 19.17 23.46 

~ 7.78 9.49 " ,14 13.28 7.78 9.49 " .14 13.28 13.36 15.51 17.54 20.09 

10 9.83 12.16 14.10 17.42 10.69 1519 2000 26.16 19.98 26.99 33 45 42.49 

20 9.57 '190 14.42 17.88 10,16 15.09 21 .41 31 .82 18.67 25,71 34,01 48.24 

5 50 9,45 11 .83 14.03 16,99 9 .69 1437 20.12 29.09 16.06 23.95 31 .24 44.01 

100 9.44 1148 13.64 16.70 9,77 13,66 18.15 26.33 17.60 22.91 28.68 38.34 

200 931 11.31 13.18 15.88 953 12.97 16.79 22.28 1700 21,25 26,75 3321 

800 9.27 11 .10 12.93 15.50 9,25 11 .70 1.4.25 17.82 16.21 19,29 22.24 26.42 

~ 9.24 11 .07 12.83 15.09 924 1107 12.83 15.09 15.99 18,31 20.48 23.21 
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