
 
 
 
 
 

 
 

Serie documentos de trabajo  
 
 
 
 

 
A CLUSTERING PROCEDURE FOR THE ESTIMATION OF 

ECONOMETRIC MODELS WITH SYSTEMATIC 
PARAMETER VARIATION 

 
 
 

Carlos M. Jarque 
Secretaría de Programación y Presupuesto 

 
 

DOCUMENTO DE  TRABAJO 
 

Núm.  VIII - 1983 
 
 

 
 

 
 
 
  
 



A CLlJSTE R iI'~G r)nOCEDU RE FOR THE 

- ESY tlVl/\T 10 I\J 0 t.: [:i:;OI\JOlVl E-r RIC IVIOf; i:: LS 

WrrH SYSTEMATIC 1'>J\i\AiVlETEB VABIATION 

CARLOS M. JAROUE 

Secreta ria de Programaci6n y Presupuesto 

ABSTRACT 

We sugges1 a two stage procedure for the estimation of models with systematic 

paralflE:1Cr variation" I n the first stage, the observations would be classified by the use of a 

criterion su~~~estcd. aiming at the formation of groups of homo~Jeneous parameter values 

(rcgim23}. "I'he ap;JicJtion of clusterin~J techniques in the present settin~l is indicJted. In 

the secon.:i sCiU'-:, the t!conornctric estimation of the regimes would follow. 

En estc trabajo sugerimos un procedimiento bietapico para la estimaci6n de modelos 

econornetricos can variacion sisternatica en los parametros. En la primera etapa, las observa-

. ciones se cla-:;ifican utilizando un criteria propuesto el cual permit£' formar grupos con valores 

homogcneos de los paca.netros. En 'Ia segunda etap3 se realizaria la estimacion econometrica 

t':; los 9Jdrn:.:tros de grupo. 

Address: 
Direcci6n General de Estad istica 
InsIiluto Nacional de Estadfstica, Geografia e Informatica 
In<:urg2fltes SUI' 795 --- PH 
Ivt2:'~ico U.I -. 



A CLUSTERING PROCEDURE FOR THE 

ESTIMATION OF ECONOMETRIC MODELS 

WITH SYSTEMATIC PARAMETER VARIATION 

By 

CARLOS /1;1. JARQUE 

Secretaria de Programacion y Presupuesto 

Documento de Trabajo 

1883 



Pi CLlE .. fERING PROCEDURE FOR THE ESTIrv1ATION OF ECONOMETRI C 

MODELS WITH SYSTEMATIC PARAMETER VARIATION 

BY 

CARLOS M. JARQUE 

1. INTRODUCTION 

Assume that observations on a cross-section of, say N individuals, 

are available and that a regression model is written as 

where y. 
1. 

y. = x~S + u. 
1. 1. 1. 

i 1, .•• ,N, 

is the i'th observation on the endogenous variable 

(1) 

y. , x. 
~ 

is a K by 1 vector representing the i'th observation on K fixed 

u. is the i'th unobservable disturbance and B 
1. 

is a K by 1 vector of unknown parameters. 

Under (1), and provided no functional relation exists between the 

regressors, the k'th element in S, say Bk , would be interpreted as 

the partial derivative of Y with .respect to X
k 

- irrespective of i. 

In practice, there may be reasons to believe the increase in Y, due to a 

unit increase in Xk , is not the same for all the individuals in the 

cross-section. Furthermore, it may even be thought that each individual 

reacts in its O\vn particular \-.7ay to an increase in Xk , i.e., that each 

has 'its ot-ln value' of B
k

. 'To account for this parameter variation, B 

could be replaced by S. 
1. 

in (1) giving 

y. = x~B. + u. 
1. 1. 1. 1. 

i 1, .... ,N. (2) 

Without additional assumptions, it is not possible to proceed any 

further due to the fact that - in (2) - there are NK .parameters to be 

estimated (apart from those related to disturbance terms) and only N 

observations. Various assumptions. can be made to overcome this problem. 
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For instance, one may assume parameter variation only occurs in the 

coefficient associated with the intercept term, and therefore introduce 

variation through the use 6f durrcny variables. Other approaches include 

Random Coefficient Models (e.g. see Hildreth and Houck (1968) and Swamy 

(1971»; Switching Regressions (e. g. see Go1dfeld and Quandt (1973, 1976»; 

Segmented PolynomiaZ Regressions (e.g. see Hudson (1966) and Gallant and 

Fuller (1973»; Piecewise Regpessions (e.g. see McGee and Carleton (1970» 

and Spline Regression Modets (e.g. see Poirier (1976». 

Here we assume we can specify a set of p variables Zl' ••. 'Zp 

1 
that affect the value of the vectors S.. Also, that z~ = (z'l' ••• 'z, ) 

1 1 1 1p 

is known for all the N individuals in the cross-section, \vhere Z •• 
1J 

is the value of Z. for individual i. Further, \ole assume to have 
J 

S. 
1. 

F(z.) + E. 
1 1 

i 1, .•• ,N, (3) 

function which is equal to the expectation of the k'th element of Si 

given zi; and Ei = (£il' .. · ,E iK)' is a K by 1 random vector 'vith 

zero expectation and VCM given by E[£.E~] = n 
1 J 

if i j and 0 

otherwise. \~e refer to parameter variation of the kind specified in (3) 

as Systematic ParameteI' Variatio·n (SPV). 

In this paper we concentrate on the SPV model given by equations 

(2) and (3). In Section 2 we comment on a test for SPV, and in Section 3 

we suggest a t'uJo stage estimation procedure that may he used when there is 

evidence of parameter variation. The [ipst s~~ge of our estimation 

procedure is presented in Section 4. The seeon~ stage is discussed in 
.-

Section 5. A numerical exercise is included in Section 6, comparing 

three estimation procedures under various forms of SPV. Other possible 

approaches to the problem of para~eter variation and some concluding 

rc-m::lrk-c: ~rp fnnnr1 in ~prtinn'7_ 
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2. TESTING FOR SYSTEMATIC PARAMETER VARIATION 

We note the existence of £i in (3) makes Si a random vector; 

also, that if an element in x. 
1 

is constant for all i, U. 
1 

would not 

be distinguishable from the varying intercept and it could be subsumed 

into the latter. We assume our regression model contains an intercept 

and (without loss of generality) omit the term -u. in (2). 
1 

If Fez.) were known, substitution of (3) into (2)" would yield 
1 

an equation amenable to econometric analysis; and its estimation could 

be carried out - for example - by the use of nonlinear procedures. 

Unfortunately, in general F (z.) 
1 

would be unkno'\vu. If we estimated 

equation (1) - neglecting the Spy - problems \.Jould arise because of 

functional misspecification. He may, therefore, be interested in testing 

the existence of SPY. He have noted F(z.) is in general unknown. So, 
1 

to derive a tes t for Spy \.JC proceed under the presumption that existence 

of Spy may be detected (hopefully in many cases) by assuming linearity, 

i.e., by set!ing 

1- 1 l 
Fez. ) r I J 1 L Zi 

and testing H : y' Yi = 0 1 

y' = 
k (Yk1 , •.. ,'Ykp) is a 1 by 

When we substitute (4) into 

y. 
l 

Ylo Y' 1 

Y2b Y' 

r 1 • 2 

l. :i_ (4) 

YKo Y' K 

0, where Yko is a scalar and 

p vector of coefficients, for k = 1, .•. ,K. 

our model we obtain 

(5) 
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where xi+ = (xi, (zi S xi.» , y = Vec{r} ~ U i + = xi £i' t} denotes 

Kronecker product, and Vea{o} is the vecto~ operator such that, if A 

is an n by r matrix given by A = (iiI t ••• ,ar ), Vec{A} is an nr by 1 

t 1 t ( t ')' vec or equa 0 a1 , ..• ,ar • 

The disturbances u i + in (5) are heteroscedastic ~ut, nevertheless, 

we can easily test for SPV by using the heteroscedasticity-consistent test 

suggested by '~ite (1980 , p.820). For this problem the test statistic is 

where is an N by (K+Kp) matrix with itth 

given by x~+; R = [0; I Kp ] is a Kp by (K+Kp) matrix, and 

~.+ = y. -x~+Y. 
1 1 1 

Under H : y = 
o 1 = y = 0 

K 
(and provided regular 

conditions.are satisfied) FSpV would be asymptotically distributed 

row 

2 as X (Kp) " Ho would be rejected for large values of FSpV. If H were 
o 

accepted, we could say there is lack of evidence of SPV and use results of 

the usual regression model, or results of the random coefficient model 

(e.g., see Hildreth and Houck (1968». 

two approaches: 

approximation to 

Firstly, we may s~ppose 

F(z.), 
1 

and regard 

If 'R is rejected, we may follow 
o 

r(l,z!)' 
1 

is a reasonably good 

as the estimated model; 

SecondZy, we may use the estimation procedure suggested in the next Section. 

(In Section 6 this suggested procedure is found to perform better than the 

first procedure in terms of goodness-of-fit). 

3. A TWO STAGE ESTIMATION PROCEDURE 

We assume each element of F(z) is ~ 'smooth function' ov~r the 

region of interest in the loose sense that, for values of z = (Zl' ••• 'Zp)' 

that are 'close', the values of F(z) would also be 'close'. The 
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motivation for the approach of this section is the idea that if t3e N 

individuals are classified into say L groups, so that within a group h 

the values of z. are 'close', then - by smoothness of F(z) - the values' 
1 

F(z.) would be 'close' for members of that group and could be approximated 
1. 

by the group mean. 

Now we introduce necessary definitions. Let Ih be the subset of 

the set of integers {l,2, .•• ,N} that defines group h for a given 

classification; Dih be a dummy variable that takes the value 1 if 

i E Ih and 0 if not; and Nh be the number of individuals in group h, 

for h = 1, •.. ,L. In addition, observe (3) and define 

S (h) 

Similarly, define s = 
N 
E 

i=l 
F(z.)/N 

1. 

L Nh 
L N S(h) 

h=l 

(6) 

a"nd note that, using (6), this is 

(7) 

We refer to the vectors 8(1), ... ,S(L) as regimes, and to S as the 

macropa1?ame ter .. 

In terms of 13 (h) our original model (given by (3) and (2) without 

u.) may be written as 
1. 

with 

y. 
1. 

S. 
1. 

S(h) + vih 

(8) 

i·E ~h; h 1, ... ,L, (9) 
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where v . h = F (z .) - B (h) + £ •• 
1. 1. 1. 

It may be shown that E[vo h ] = E.E ,.[v.
h

] = 0 
1. 1. e; 1. 1 

for all i, h, and \-le use 8h to denote E[vihvjh] for i = j. It is 

also interesting to note that equation (9) may be written as 

where v. 
1. 

L 
E S(h)Dih + v. 

h=l 1. 

i 1, ••• , N , (10) 

The first term in the RHS of (10) is a vector containing K step-

functions, given by 

s . 
F (z.) = 

1. 

L 
E B(h)Dih , 

h=l 

and may be regarded as an approximation to F (z. ) • 
1. 

Our proposal is to 

estimate the model using s 
F (z.), 

1. 
i.e., to use (10) rather than (3). 

This estimation problem may be more specifically stated as - how to 

classify the N individuals into L groups, and - how to estimate the 

regi77eS - so the resul ting s tep-:functions 
s 

F (z.) 
, 1. 

are the 'best' 

s approximation' to the elements in F (z.) • 
1. 

To estimate F (z.) 
1. 

we may 

proceed in two stages. In the firs-t stage, L and 11' 12 , ••• , IL (and 

hence Dih) would be determined by the use of an appropriate classification 

or clustering criterion. This is discussed in Section 4. In the second 

stage the parameter vectors S(l), ••. ,S(L) and B (i.e., the regimes 

and the macroparameter) would be estimated by the use of existing 

econometric procedures. This is illustrated in Section 5. o 

Before concluding this section, we nO,te the problem of classification 

of individuals has been referred ,to in the econometric literature as a 

'sample separation probZem'. Various authors - although in perhaps 

different contexts - have commented on this. For instance, Kooyman 
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(1976, p.127) states that observations should be divided -into groups 

"that are homogeneous in respect of value of the parameters" and notes 

that - unfortunately - subdivision "is in most cases subjective". 

Similarly, Poirier (1976 t p.l55) considers the choice of sampl.e partition, 

and notes the 'difficulty of the problem'. In turn, Ch~nery and Syrquin 

(1975, p.162) state that 

eli\;; 
"splitting the sample and estimating separate 
patterns for the subgroups may contribute to a 
better analysis". They note the classification 

"should rely as much as possible on theoretical 
arguments". Also that "clustering techniques may 
be useful in suggesting ways to quantify theory­
based group factors, and (that) its applicability 
to this problem should be further studied". 

The approach presented in the next sec tion (\vhich uses clus tering 

techniques) provides a tless-subjective' solution to the problem of 

econometri~ sample separation. We hope our results lead to the solution 

of similar problems (e.g., determination of knot location in spline 

functions). 

4. FIRST STAGE: 'Clustering of Individuals 

The first stage of our estimation procedure deals with a classification 

problem, and for this it may seem natural to use Cluster Analysis. 2 

Cluster Analysis is a generic term applied to a set of classification 

techniques. A classification, as generally understood, allocates individuals 

or entities to initially undefined groups or clusters, so that entities in 

a cluster are in some sense close to one another. 

In the previous section it was said that if 

it would be assumed the conditional expectation of 

z. was 'close' to 
1 

z. , 
J 

8. , 
1 

given 3 i , would 

be 'close' to that of s . given z .• The term 'close' was left undefined. 
J J 
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Of course a definition is required, and for it a distance measure has 

to be given. There 'are many of these. For example; Cormack (1971) presents 

ten different ones which have been proposed by several authors. It i$ not 

the intention to review these here. The important point to note is that 

various distance measures are used as optimizing criteria in existing clustering 

algorithms (e.g .. , see Bolshev (1969), Everitt (1974), Ball (1971) or 

Hartigan (1975)) and that these criteria have arisen in many fields (e.g. 

Biology, Psychology, Anthropology and Physics). In general, different 

clustering criteria would provide different classifications. Although many 

might seem appealing for the purpose of classification, to this stage it is 

not clear how these criteria relate to estimation aims of the models here 

considered. 

In Subsection 4.1 a clustering criterion is suggested which is 

derived \\li thin an ecoYl-,-"Jmet}?ie estimation frameiJopk. This is obtained by 

maximizing the 1l0verall Relative Explanatory Pot.]er u of s 
F (z.) 

1 

conditional expectation of ·6. 
~ 

given 
. 3 

F (z. ) • 
1 

i. e. , 

to the 

In Subsection 4~2 several indicators are given for the determination 

of the number of groups in which the individuals should be classified. 

4.1 

For the purpose of obtaining our clustering criterion we shall use 

equation (4), i.e., we shall set F (z.) 
~ 

equal to r (1, z:) t • 
~ 

This amounts 

. to taking a Taylor-series expansion of Fk(zi)' and neglecting all the 

nonlinear terms in the derivation of the clustering criterion. It has been 

assumed that Fk.(zi) is a smooth function! and our use of equation (4) is 

based on the presumption that the 'optimum classification' should not be too 

sensitive to departures from linearity •• o 
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We first consider the ease p = 1, i.e., the case where Bi depends 

on a single variable, say Zl. Then, Pi would be given by (set p = 1 

in (4) and substitute the result in (3» 

(11) 

and the k'th element of Pi would be given by 

(12) 

where Fk(zil) = "'(ko+Yklzil' for i = 1, ••• ,N andk = 1, ••• ,K. It 

may be shown the variance explained by the regression of Bik on Fk(zil) 

is equal to 

(13) 

(For proof see 

Proposition 1 in Appendix and set p = 1). 

Now we 'assume the individuals are classified into L groups, and 

that is approximated by a step-function with value 

Sk(h) for all the Nh individuals in group h. In this case we may 

write (see (10» 

(14) 
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where i = 1,2, ••• ,N and 

k = 1, ... ,K. It may be shown (see Proposition 2 in Appendix and set p = 1) . 

that for (14) the explained variation of the regression, say 2 
R(2,k) , 

is given by 

2 
R(2,k) = 

where is the h'th group mean of 

We take the ratio of 2 
R(2,k) to 2 

R(l,k) 

(15) 

as a measure of "Relative 

Explanatory Power" (this term is used by Aigner, Goldberger and Kalton 

(1975». The measure refers to the explanatory power of the step-function 

approximation s 
Fk(zil) made to Fk (Zi1), and is more formally defined as 

L Nh - - 2 
2 1: 

N (zhl - zl) 
d{2 R(2, k) h=l 

k = 1,2, ••• ,K. (16) k ? 

RCl,k) V[ Z~] 

t{?2 We may see -K is also the squared tcorrelation coefficient' between 

s Fk(zil) and Fk(Zil), and the complement of 'information loss' due to 

a s.tep-function approximation when (12) is true. An alternative expression 

for ~ is obtained by using the identity 

L Nh - - 2 
z:: (zhl - z1) 

h=l N 
(17) 

where is the value of for the i'th individual in group h, 

giving 

(18) 
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1 
L Nh 

- 2 
D :: - L E (zhi 1 - zh1) 

N h=l i=l 
(19) 

The average of the "Relative Explanatory Power ll coefficie:nts, i.e., 

the average of the K squared 'correlation coefficient.s' ~, ••. ,~, 

may be taken as a measure of nOverall Relative Explanatory Power". 
5 

This is 

Dt2 1 K ~? I [ J 
Ut = K L ~\ = 1 - D V 21 

k=l 
(20) 

and a criterion suggested for the classification of the individuals is 

to find such that is .maximized. In this case, is 

independent of r and given that V[Zl J is fixed, the nOverall Relative 

Explanatory Power" will be maximized '\o}hen D is minimized. (In fact, 

7 
minimizing D implies maximizing ~~ for each k = -l, ••• ,K). This is 

equivalent to minimizing the \o}i thin group sum of squares of Z1' and we 

may ther~fore u.se the procedure of Singh (1975) or the clustering algorithms 

of Hartigan (1975, Chapter 4), '~bcQueen (1967), Sparks (1973) or \.fard (1963) 

[see also Jarque (1982, Section 3.4)]. The resulting classification shall 

be denoted byC* and referred to as the ovtimum classification. 0 

Now we consider the mope genepal case where p > 1. Here we have 

r (1, z!) l + E. , and the k' th element of 8. would be given by 
111 

(21) 

where Fk (zi) = Yko + ykzi for i:: 1, •.. ,N and k = 1, ••. ,K. It can 

be shm.JTI (see Proposition 1 in Appendix) that in this case 
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where 

N 
L 

i=l 
(z. - ~) (z. - "Z) 1 IN 

1 1 

is the VCM of the Z-variables and z = 

2 in Appendix) the regression of Sik 

gives 

where 

L 

N 
E 

i=l 

on 

B 2: (N
h 

IN) (-;h - ~) (zh - ~) r 
h=l 

and 

E z .. /N
h 

• 
'EI .L 

1 h 

z./N. 
1 

Similarly, (see Proposition 

s 
Fk (zi) Sk (l)Dil + •.• + Bk (L)DiL 

Therefore, the lIRelative Explanatory Power" referring to the kith 

element of B. is equal to 
1 

The quantities Zh depend on a given classification 

(22) 

c, 

and to emphasize this in what follows we shall write them as ~(C), B(C), 

Nh (C) and ~h (C) • Using this notation we obtain that the "Overall 

Relative Explanatory Power" is given by 
6 

,02 (C) 1 K d2 1 K Y k B (C) Y k 
U1. == K 1: uk (C)· = if L , " 

k=l k==l Yk:-J 'k 
(23) 
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A ,. h 
r~S 1:01:" t e p :::: 1 case, the cl.ustering criterion would be to find the 

claf:r; 5. fica tioD C~':: that maximizes 1fi2 (C) • o 

- is interesting to note that if K = P and each element in 

S. is de[2£n:~ned by only one Z-variable,i.e., r is given by 
I. 

o ... 0 

y 22 . • • 0 
CEN'1l{O DE DOCUM:ENTACIGJ" 

CENTRO DE ESTUDiOS ECONOMH··~. 

o o 

then 6t2 (C) reduces to a form which is independent of r and equal to 

tS~(C) 1 P 
L 

P j=l 

[B(e)] .. 
J.1 

[ ""] ~ jj 

where fA].. denotes the i,j tth element of the matrix A. The use of 
1J 

identity (17) for each variable Z., in the expression for 
J 

reduces this to 612
(C) = 1- (lip) ¢(C), with 

¢(e) 

and where zh"(C) 
1J 

1 P L 
H L L 
J.~ j=l h=l 

Nh(e) - 2 
( zh' , (e) - zh' (e) ) 

1J .J 
v[ Z.] 

J 

and ~hj(C) denote, respectively, the value of 

for the itth individual in group h, and the h'th group mean of 

when the classification is C. Therefore, we see that maximizing 

(24) 

Z. 
J 

Z. , 
J 

1R2
(C) is 

equivalent to minimizing ¢(C). Hartigan (1975, Chapter 4), Macqueen (1967), 

Sparks (1973) and t.Jard (1963) provi~e algoritruns for .the minimization of 

functions such as ¢(C). These algorithms may clearly be used for the 

comrutation of the optimum classification C* by feeding them with the 

CE~TRO Df ESTU~~OS 
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> ~ , 

zl' .. (C)/(VrZ.]) (see equation (24». 
ilJ J o 

mIen we try to extend the results to a more general form for r, 

problems are encountered since ~2(C) would now depend on the last p 

columns in r, i.e., the vectors (see (It)). However, these 

may be estimated by the use of OL5 on the equation resulting from 

substitution of (21) into y, = x!B .• 
- ~ ~ 1 

The estimator we obtain is 

defined in Section 2. 

It seems natural to proceed to find C* such that tfi2(C) is 

A? ~ 

maximized, where di- (C) is equal to 61-'- (C) (see (23» but replacing Y
k 

by Y
k

, i.e., 

Define 

L 
H(C) = 1:. L 

N h=l 

K 
1 K L 

k=l 

Nh(C) 

y' B(e) y 
k k 

L . (zhi (C) - zh (C» (zhi (C) - ~h (C» I 

i=l 

(25) 

(26) 

and recall the identity Bee) = ~ - Wee). Now substitute this last expression 

for BeC) into (25), obtai~ing 

where 

( 
11K 

1 - Nt( ~ L 
t k=l 

A A 

L 
l: 

h=l 

Nh(C) 

E 
i=l 

Yko + ykzhi (C), 

Yk + Y.'~l (C) o K 1 

(27) 
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and 

He therefore see that 6f (C) is maximized when the term enclosed in { } 

. hl (27) is minimized; and, for this, we may again use the alustering 

alg .. ;ri-thmD mentioned previously, but - this time - feeding them with the 

data 

A "t ... 7 
S1' .(C)/(V[S.]),2. 

11J J o 

In summary, to maximize the "Overall Relative Explanatory Power ll of 

the approximation made to F (z.) , 
1 

the N individuals should be 

classified such that (19) is minimized when p = 1, and {24} is minimized 

when r = r
D

" For the mure general case of a "non-diagonal" r, the 

criterion is to maximize (25). Having found Tl ,T
2

, ..• ,T
L 

the econometric 

es timation of the pcg1.;nes would follow. 

4.2 Determination of L 

In Subsection 4.1 it was assumed L was known. The proper choice of 

L is important given that it will partly determine how good the approximation 

to F(z.) is. The number of observations N will restrict the value of L~ 
1 

due to a requirement on the minimum. number of observations per group in 

order to estimate the regimes. In general, without consideration of degrees 

of freedom per group, the higher L the better the approximation will be. 

However, there may be a value beyond which no 'significant improvement' is 

made, and it would be desirable to find this. 

For example, if p = 1 

6t2 (C) using L groups, say 

and Zl 

2 tfi (C:L), 

has a uniform (al ,a2) distribution, 

would be given by 6t2 (C:L) = 1- (1/L2). 

[See (20) and note the variance of a uniformly distributed random variable 

is simply 1/12 of the square of the range, i.e., 
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in this case, 1.Jit~in each Jroup~ the distribution would be uniform and 

the range equal to (aZ-al)/L so, D = (a2-a1)2/(1ZL2)J. The values of 

tH2 (C:L) for L =2,3,4,5,6 and 7 are respectively .750, .889, .938, .960, 

.972 and .979. Hence beyond L 7 1 n2(C) ittle gain in Ul. would be obtained. 

In general, a procedure for determining the number of groups is to compute 

~2(C*) (or ~Z(c*) if p = 1) for different values of L, and to choose 

that beyond which there is no substantial increase in «fiZ(C*) (or t\12(C*) 

if P = 1). It is interesting to note that if Zl' ••• 'Zp are all 

qualitative vari.ables, so that Z. can only take one of n. values, then, 
J J 

P 
di2 Cc*) 

? 
by setting L = IT n. , \-Je \..,Quld have' = 1 (or 6\<-(C*) = 1 if 

j=l ] 

P = 1) • In this case, c* would be the classification of the individuals 

with each group consisting of individuals \.,rhose z. are equaL. 
~ 

The determination of L may also be carried out vlithin a Cluster 

Analysis framework. For instance, we could use Ward's (1963) clustering 

l~ 

algorithm on the data Z h' . (C) / (V [ Z . J )'2; 
1J J 

and note that if the individuals 

group 'appropriately' into L groups, then it is sensible to approximate 

Fez.) by a step-function of L pieces. Several indicators for this are 
~ 

found in the literature. For example, Beale (1969) suggests the use of 

[

N-L f L212/P l 
__ 1 _ -1 I 

N-L2 t L1 J J 

where 
N-L 

b
L 

= --p-- tpace{B(C)}. Using an F-Distribution, a significant result 

would mean that a subdivision into L2 groups is significantly better than 

into a smaller number of groups Ll " Calinsky and Harabasz (1971) propose 

the use of A = [trace{B(C)}/(L-l)]/[trace{H(C)}!(N-L)], where \.J(C) = L-B(C) 

is the matrix of the within groups sums of squares (see (26)). Here, if A 

has its maximum value at L*, we \.Jould set L = L*. Yet another criterion 
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(1971). All of these indicators require the computation of B(e) 

(therefore wee) would be easily obtainable) and hence, in practice, 

several of these may be calculated before reaching a final decision on the 

number of groups to use. 

5. SECOND STAGE: Estimation of Regimes and Macroparameter 

The second stage of our procedure refers to the econometric estimation 

of the regimes S(l), .•. ,S{L), and the macroparameter S (see (6) and (7». 

In this section alternative estimators are presented. The results described 

are conditional on a given optimu~ classification defined by TI, ... ,T
L

" 

Two general approaches may be taken for the estimation of the regimes. 

The first uses information on the variables Zl'.'.'Zp and treats the 

model as one with systematic parameter variation. This approach is discussed 

in Subsection 5.1. The second approach ignores the information on 

Zl""'Zp and estimates the regimes using random coefficient regression 

methods. This is treated in Subsection 5.2. Finally, in Subsection 5.3 

the estimation of the macroparameter S 8 
is discussed. 

5.1 Systematic Parameter Variation Approach 

It has been assumed that Pi is given by S. = F(z.) + £., tv"here 
1. 1. 1. 

For derivation of the clustering criterion it was further assumed that 

Fk(Zi) was approximated by a step-funct~on. However, once the individuals 

. have been grouped, it may seem appropriate to approximate Fk(zi) by a 

tineaP function within each group h, for h = 1,2, ... ,L. One may write 

S. = f(h) [:J + sih for i E Ih ' (28) 
1 
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to rt, fiJI.' i 
U 

j, and h = k and 0 otherwise. The aim now is to 

estiwttte ,r(h)< 

Substitution of (28) into the model y. = x~B. gives the relation 1. 1. 1. 

Y1.' = «1, z!) ex!) Vee {r (h) } + x! £ • h 
1. 1. 1. 1. 

Let yeh) = Vecdr(h)}, Yh = (Yl'y2' ..... 'YN )',9. £h = 
h 

( ' t ')' 
E1h '£2h'···'£N

h
h ' 

* Xdh = diag{xi,· .. ,XNh }, £h = XdhEh , and Zh be the Nh by (p+l)K 

matrix \vith it th ro,"" equal to «1, z~) @ x~). Assume the rank of 
.1.1. 

(p+l)K. Then tbe abo~e relation may be . 

written, in matrix form, as 

is 

Equation (29) is amenable to econometric estimation. For example, one 

may assume rlh to be di(l90na.Z and proceed a 1a Hildreth and Houck (1968); 

estimating y(h) by 

(30) 

where G
h 

is an estimator of the VCM of [e.g., one may use 

.. 
equal [Xhah]j' for j = k and equal to zero for j 4 k, where [ahJj 

y(h) one obtains r(h); then one may predict 

estimate S(h) by 

and where 

A= [a,.J}. 
1.J 

S. by r(h)[l z!]' 
1. 1. 

From 

and 

(31) 
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The assumption that ~ is diagonal may be avoided by following 

Swamy and Mehta (1975). They consider a prior distribution for y(h) with 

mean e(h) 'and VCM ~h' and suggest using the approximation to the minimum 

average risk estimator given by 

where rh = Xdh (IN @ Qh)Xdh and where 
h 

Swamy and Mehta (1975, p.596». 

5.2 Random Coefficient Regression Approac~ 

(32) 

is an estimator of (see 

A second, approach to the estimation,of the regimes may be to consider 

the model as written out in (8) and (9), and proceed to estimate S(h) and 

~h as in a random coefficient regression model using the data corresponding 

to Iho Although this approach neglects the information available in 

Zl'Z2' ... 'ZN' it provides an alternative estimation procedure that would 
h 

be particularly useful when the number of observations in a group is small. 

,(In order to us£ (30) one requires that Nh be greater or equal to (p+l)K). 

(8) and (9) may be written as 

h 1,2, ... ,L. 

Assuming '~h to be diagonal one may follow Hildreth and Houck (1968) and 

estimate 8(h) by 

+ S (h) (33) 

A 

where Ah is an estimator of the varian~e-covariance matrix of ~h (see 

Hildreth and Houck (1968, p.589». 
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Alternatively, one may avoid this assumption and follow Swamy and 

Mehta (1975) and use as estimator of S(h) 

(34) 

'where r (h) is the prior mean and l/J
h 

the prior VCH of a (h) , 

'" 
Lh = Xdh (IN e 6

h
)Xdh and ~h is an estimator of 6

h 
(see S,\vamy and Mehta 

h 
- 10 (1975, p.596». 

5.3 Estimation of the Macroparameter 

So far, various estimators for the pegimes have been presented. In 

P·Cdc:t.ice, one may also be interested in estimating the macropapa'1leter a 

(see (7». For this one may consider .the estimators of the regimes and use 

[(~\/N)B(h) (see Subsection 5.1), or [(Nh/N) (3+(h) or E(Nh/N)S(h) (see 

Subsection 5.2). Alternatively, one may regard the B(h) as a sample of 

independent identically distributed vector random variables '-lith mean e 

an(l VCH 6, and choose to estimate Band .6.,6
1

" •• ,llL. For this, one may 

follow Swamy and Hehta (1975, Section 3). They discuss the estimation of a 

:_'andorn coefficient regression model from panel data, but their results are 

~ll ;'-i() applicable in a purely cross-sectional frameHork. This is now 

"i I' . Qi.C3ter1. 

Firstly note that estimates of ~1, ... ,6L may be obtained from 

2stimation within Ih for h 1,2, ... ,L (see comments below (34». Now 

define X - (X' Xl X')' - l' 2'~··PL ' 

and S = l:b (h)b I (h) - (l/L) (l:b (h») (Eb' (h» . Swamy and Mehta (1975, p. 600) 

suggest estimating ~ by 

L 
S 1 [ (X-'1 i:

h
- 1 X- )-1 

L-l - L h=l --t --h 

and assuming that the prior mean of 13 is r and the prior VCM is tV, 
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~ - h 
..... 

where L = diag{Xl L\Xi + J.;l' • • • ,XL tlXL + LL}· It may be shown that a is an 

approximation to the minimum average risk estimator of 8. Also, that under 

'diffuse prior information (i.e. when setting -1 
¢ equal to zero) this would 

reduce to a weighted sum of the estimators of the regimes, b(h), and 

given by 

8 = 

where 

6. NUMERICAL EXERCISE 

In this section, a numerical exercise is presented for the comparison 

of three esti.mation procedures under alternative forms of paralTleter 

variation. For the study, N 100, K = 2, p = 1 and L = 5. Variable 

XiI is equal to one for all i = 1,2, ... ,N and the observations on Xz 
are generated from a Normal (10,1) . TIre disturbance terms u l ' •• • ,uN 

generated from a Normal 2 and the observations on are (0,0 ); z are 

generated from a Lognormal such that log (Z) is distributed as a 

Normal (3,1) (the subroutine used is described in Naylor et a1. (1966». 

Four models are considered, defined by y. = x:S. +u., 
111 1 

for i = 1, .•• ,N 

and where S. 'is non-random and given by. the following expressions 
1 



(3) 

with 

e. = 
1. 
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e 
1 (z.) 12 810 +-8- 1. 

11 

(87,88,89'°10,811,812,0) .. 

. and 

(1,250,2,2,7000,3,10) , and 

(200,10,1,1,1,20,10) • 

Each model is estimated using three procedures which are as follows. 

(i) Estimating B. by 
1. 

S. 
1. 

r(l z.) , 
1. 

where 

" -1 vecdr} = (X~x+) X~Y and X+· is an N by 4 matrix 

with i'th row equal to (1,xi2,zi,xi2zi) and Y = (Yl' ••• 'YN)·. 

This procedure is equivalent to taking a linear approximation 

and in what remains is referred to as linear .-

parameter variation - LPVe. 
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"- = e+(h) (ii) The second procedure estimates Si by 8i for 

S+(h) 
,.. 

i E I
h

, where is defined by (33) with 1\ = IN ' 
h 

and Ih is determined by minimizing (19) using the cubic-

root procedure of Singh (1975). It should be clear that 

this is a two stage estimation procedure (equivalent to OLS 

estimation within the optimum groups) and that it approximates 

Fk(zi) by a step-function. The procedure is referred to 

as 2S-0LS. 

'" ,.. 
(iii) The third procedure estimates 8i by Bi = r(h)(l z.)' 

1 

" 
for i E I h , where Vee{r(h) } is given by (30) with 

0 IN and where Ih is the same as for (ii). This 
h 

h 
is also a two stage estimation procedure and approximates 

Fk (zi) by a piece\vise linear function .. The procedure is 

referred to as 2S-LPV. 

As a goodness-of-fit measure we used R2 adjusted for degrees of 

freedom, denoted by -2 11 R . The values obtained for each of the four 

models, using the three estimators described, are reported in Table 1. 

TABLE 1 

Values of R2 for Four Models 

MODEL 1 2 3 4 

(i) LPV .5537 .8364 .7979 .7499 

(ii) 2S-0LS .5402 .8001 .9123 .8451 

(iii) 2S-LPV .5538 .8363 .9711 .9465 

The Table shows that for Model 1 (i.e. when parameter variation does 

not exist) the three procedures give approximately the same -2 
R (in fact, 

these are close to the one obtained using OLS, which is -2 R = .5607). 
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Comparing LPV and 2S-0LS, it is observed that 2S-0LS performs better when 

parameter variatioil departs from linearity (e.g., for Model 3 - where 

parameter variation is quadratic for the intercept and cubic for the slope -

the increase in 
-2 
R is approximately 14 per cent). Comparing 28-0L8 and 

2S-LPV, one notes that 2S-0LS gives a lmver R2 for all four models. This 

is reasonable, since piecewise linear functions approximate better than 

step-functions. Nevertheless, 25-0LS should not be discarded given that it 

may be a useful estimation procedure when there are groups of small size 

(as mentioned before, 2S-LPV requires at least (p+l)K observations per 

group in order for the econometric estimation to be possible). Other 

groupings of the observations were used to compute the estimator 2S-LPV 

and evaluate the effect of the optimum'classification C*. On average, the 

R2 ,s obtained were approximately 10 per cent lm.[er than those computed 

with the optimum classification. Overall, these results indicate the 

preference of the tuo stage procedures, particularly 25-LPV, and provide 

evidence that the increase in goodness-of-fit over LPV may be substantial 

(e.g., for Model, 4 the increase in -2 
R is approximately 20 per cent when 

using 2S-LPV rather than LPV). 

7. CONCLUDING REMARKS 

In this paper, a two stage prccedure for the estimation of systematic 

varying parameter models has been discussed. In the first stage, the 

individuals would be classified into groups by the use of a clustering 

criterion suggested. The second stage refers to the econometric estimation 

of the regimes~ and several estimators for this were described in Section 5. 

In our estimation procedure the clus.tering criterion is to maximize 

the IIOverall Rela tive Explanatory Pmver", 
2 tR (C), 

approximation to the conditional expectation of 

as 

of a step-function 

S.. We defined Gt2 
(C) 

1 



where 6\. (C) 

6{2(C) = 1 ~ .al(C) 
K k=l U1< 
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K R2 
=! L (2,k) 

K 2 
k=l R(l,k) 

is a correlation coefficient, and 2 
R(2,k) and 

goodness-of-fit measures of particular regressions. When the VCM of 

are 

E. 
1 

in (3), i.e. st, is not diagonal, the equations defined by (3) are a system 

of seemi~Jly unrelated rearessions, and better measures of goodness-of-fit 

exist for such models (e.g., see Buse (1979». An alternative definition of 

"Overa1l Relative Explanatory Power" is the ratio of Buse's goodness-of-fit 

measures for the systems (12) and" (14). Unfortunately, this ratio depends 
... -

on urtknown quantities, such as n and, more importantly, for our problem 

this criterion is not numerically manageable. For these reasons we limited 

our discussion to the goodness-of-fit measure ~2(C). 

Other approaches to the estimation problem may be considered. One 

may be to take the model as written in (8) and (9), and assume v ih is 

normally distributed. We could then impose. Nh > K, and maximize the 

likelihood function with respect to the classification and the parameters. 
#. 

Another may be to consider finding the classification that optimizes a 

function of the second order moments of some estimator of the regimes. 

An inconvenience with these approaches is that, unlike the two stage 

procedure that uses ~(C), we may end up with a numerically unmanageable 

clustering criterion; and searching for the optimum classification by total 

enumeration of alternatives would be computationally inefficient due to the 

large number of these. 

Throughout this paper, our discussion has been made assuming we have 

a cross-section of individuals. Of course our results are applic~ble when 

having observations on anv se.t of entl·tl·es~ such as ~ . 
J ~ ~arms ln a region or 

banks in a particular C~ntry. Also, our findings are·app1icable in 
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;time.-;jeici.r,:) ,s,tudi.e-6.· Here ~ we would ne~d to modify slightly the algorithms 

used fCT L:he classification of the observations (as in McGee and Carleton 

(1970)), so the resulting groups contain subsequent observations in time. 

Before concluding we will briefly mention some results of a Family Budget 

study which applied the two stage procedure suggested. The data was obtained 

from the 1975 Mexican Income-Expenditure Household Survey of the Mexican 

Ministry of Labor. We used the Extended Linear Expenditure System (ELES) 

derived by maximization of a Smne-Geary utility function, obtaining a system 

of equations for expenditures with current family income as the ,regressor. 

Given t\lat the study used cross-sectional data we postulated that the 

parameters of this system of equations were related to socioeconomic variables, 

such as income and family size and age and occupation of the head of the 

household 12. The problem was how to group the 521 households for which data 

was available (only the Mexico City households were considered) so the 

parameters of the demand system were approximately the same. 

The first step was to determine the number of grups into which the 

households were to be classified. For this, the a< 2 (C*) criterion was 

considered. However, in this application we had a system of m equations, so 

we took the average of the m individual~2,~ as the criterion to optimize. 

We call this the "AveJLage. OVeJLa.U Rela.tive. Ex.p.iana.to,l.lj POWelL" and denote it 

by R: (C~,(). The values for IR;{C*l for L = 2, ••• ,20 are reported in Table 2, 

together with the increase in ~2{C*) obtained when passing from L to L + 1. 
+ 

Although the,choice of L is somewhat arbitrary, we decided to se L = 14 because 

it gives a value of 

increase in iR 2 {c* ) 
+ 

:R2 
+ 

is 

(c*) over 

obtained. 

.9, and because - beyond this - little 

[For example, the increase in ~; (C*) 

from L 13 to L = 14 would be .015; similarly, the increase from L = 14 to 

L 15 would be .001.] 
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TABLE 2 

Maximum 'Average Overall Relative Explanatory Power' 

? 
6~(C*) ~(c*) ? 

L ~(C*) L 661-(C*) 
+ 

1 ;000 - 11 .871 .010 
2 .453 .453 12 .884 .013 
3 .618 .165 13 .895 .011 
4 .699 .081 14 .910 .015* 
5 .740 .041 15 .911 .001 
6 .780 .040 16 .912 .001 
7 .827 .047 -17 .913 .001 
8 .843 .016 18 .916 .003 
9 .857 .014 19 .919 .003 

10 .861 .004 20 .919 .000 

The classification C* corresponding to L = 14 was taken, and 

some characteristics of the groups forming this were computed. The 

results are presented in Table 3. In the column relating to occupation 

we have written, for each of the 14 groups, the occupational category 

having most frequent occurrence, together with the corresponding frequency. 

For example, group 2 is fo.rmed by 24 households from which 23 have 

the head of the household unemployed (U). (We use W, E and T to 

denote, respectively, Worker, Entr=preneur and Technocrat). Other 

variables included in the Table are mean family income, mean family size, 

and mean average age of the head of the household. A striking feature 

of the clustering is the marked separation of households by occupational 

categories, more than by income classes (e.g., groups 1 and 3 have 

similar values for family income, size and age of bead; and differ 

because group 1 is formed by Unemployed whereas group 3 is formed by 

Worker households). This indicates, apparently, that occupation exerts 

one of the main influences in the determination of consumption behaviour 
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TABLE 3" 

Characteristics of Groups from Cluster Analysis 

Number 
Group Occupation Income Family Size Age in 

Group 

-1 U(24/24) 715. 8.0 55.7 24 
2 U(23/24) 1101. 3.3 ~5.9 24 

3 Vl(41/42) 540. 9.8 49.0 42 
4 \\1(95/95 ) 464. 7.1 38.3 95 
5 W(68/69) 835. 3.6 31.8 69 
6 \.J(47/47) 859. 4.4 54.6 47 

7 E(13/28) 668. 10.4 45.9 28 
8 £(41/41) 911. 5.4 42.2 41 

9 T(62/65) 1154. 5.8 38.9 " 65 
10 T(37/41) 1701. 3.1 31.9 41 
11 T(21/26) 3534. 3.6 39.4 26 
12 T(6/10) 5538. 3.1 49.3 10 
13 T(5/5) 7196. 3.0 4l}.8 5 
14 T(4/4) 9614. 4.0 41.0 4 

We could~of course, estimate the ELES for each of these groups of 

households of 'homogeneous behaviour'. In some of these groups, 

however, we have few observations; for example, in groups 13 and 14 we 

have, respectively, 5 and 4 households (see last column in Table 3). 

Also, in some groups we have two or more occupational categories; for 

instance, group 11 has 21 Technocrats; 2 Entrepreneurs; 2 Workers 

and 1 Unemployed. Based on the results of the Cluster Analysis, we 

decided to redefine the groups to have 

(i) sufficient number of observations for estimation; and 

(ii) readily identifiable domains of study. 
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lhis required Qerging some groups~ and group-reassignment of a few 

l:Clusebolds. As pointed out previously, the most immediate split of the 

households is by occupational category. 

UnempZoyed HousehoZds 

Regarding the Unemployed, the natural further break-up was by family size, 

with splitting value 6 (The ~mostly Unemployed groups', i.e., 

groups 1 and 2 were such thtlt group 1 had households 

of size basically greater or equal to 6 and group 2 less than 6. 

Also, there were no clear income nor age differentials between these 

groups). We defined large (L) households as those with family size 

greater or equal to 6, and small (5) households as those with family 

size less than 6. So, we divided Unemployed households into 2 groups: 

Land S; hereafter referred to as UL and us. 

Worker Housenolds 

Regarding Wo~~ers, we had that groups 3 and 4 were large (L) 

size households; in group 3 most headswere over 45 years of age, and 

in group 4 most were under 45~ We define households where the head is 

over 45 years of age as old (O) and those where the head is under 45 

years of age as young (Y). [It is interesting to note that LPW (1977, 

p.122) also used this breaking point for age classification]. We also 

had that groups 5 and 6 were sma~Z (5) size Worker households; with. 

group 5 being formed by young (Y) households and group 6 by old (0) 

households. [In general, groups 3 and 4 contained households with lower 

income than groups 5 and 6, reflecting that small households have higher 

incomes]. Because of ,these' features, we decided to divide Worker house­

holds into 4 groups: LY, LO, SY and SO; hereafter referred to as 

~~Y. WLO. WSY and WSO. 
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E?itr'Cpl').:?i~CU!' Households 

Regarding Ell tJ')epY'eneu.l?S , we had that group 7 was formed by large (L) 

households and group 8 by mainly small (S) households. [Incom~ and age 

differentials were not very significant among these groups, except for 

the fact that small size households tend to have slightly higher 

incomesJ.So, we divided Entrepreneur households into 2 groups: L 

and S; hereafter referred to as EL and ES. 

TeCfmocrat Househo ids 
.. 

Finally, regarding Technocrats, we observed that groups 9 and 10 were 

basically 'low-income' (relative to other Technocrat) households, with 

incomes below 3000 pesos per capita per month. Households with 

incomes below this level were qualified by the symbol II. Between 

groups 9 and 10 no clear age differentials are apparent; but group 9 

was formed basically by large (L) size households and group 10 by small 

(S) households. [Again there was a tendency for smaller households to 

have higher incomes]. We then had group II, consisting of 'middle-

income' households, having incomes between 3000 and 5000 pesos. 

Households with income in this interval were qualified by the symbol 12 

[It is interesting to note that, out of all the Unemployed, Worker or 

Entrepreneur households, only 11 h?d incomes within this interval, and 

none higher than 6230 pesos). Finally, we had 'high-income' households 

in groups 12, 13 and 14; these had incomes over 5000 pesos and were 

qualified with the symbol 13. So, we formed 4 groups (note we 

previously had 6) of households of Technocrats, namely: ~JL, lIS, 12 

and 13; hereafter referred to as. TIlL, TIlS, TI2 and TI3. 
o 
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TABLE 4 

Characteristics by Type of Households 

Type of 
Household 

Unemp1oy-ed 
L 
S 

Worker 
L,Y 
L,O 
S,Y' 
5,0 

Entrepreneur 
L 
S 

Technocrat 
Il.,L 
II,S 
12 
13 

Income 

761 .. 30 
1613.75 

422.33 
726.57 
874.41 
849.89 

832.74 
1159.93 

1131.85 
1565.71 
3693.35 
6818.30 

Family Size Age 

7.9 55.4 
3.2 59.9 

7.9 36.6 
8.2· 51.5 
3.8 31.9 
3.9 56.9 

8.1 44.6 
4.0 41.8 

7 .. 5 41.4 
"3.8 36.0 
3.9 41.1 
3.2 42.1 

Number in 
Group 

23 
29 

89 
51 
68 
33 

31 
30 

45 
64 
20 
13 

In all, we ended with 12 groups ~ or domains of study - containing 

different types of households. The average income, family size and age 

of the head 0'£ the household, together wi th the number of households in 

each group are given in Table 4. Average income for large households 

is lower than for small households (other attributes equal). Also, 

average incomes for Unemployed t Workers and E trepreneurs are smaller 

than for Technocrats. Large households (UL, ~fLY, W~O, EL and TIlL) 

have an average of approximately 8 members, and small households (US, WSY, 

WSO, ES and T11S) have an average of approximately 4 members. 
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Having identified these 12 groups of households of homogeneous 

. consumption behaviour (relative to the parameters of the demand system), 

we proceeded to the estimation of the ELES within each group_ The complete 

description of the results is given in Jc~que (1982, ChapteA 9). 
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APPENDIX 

PROPOSITION 1: The explained variation of the regression of Sik on 

where 

is given by 2 
R(l,k)" 

Equation (21) defines 

(A.I) -

We kno:, E[Sik] = EiEs/i[!3ikJ· From (A.I) we setS Ee;/i[Sik1 = Yko+Ykzi­

It follows that 

where 
N 

Z = L 
i=l 

z,/N. 
1 

\.Je also have 

V[Bl'kJ = V.E /.[B. k ] + E.V /.[B'k] • 
1 £: 1 1. 1. £: 1. 1. 

Bu t E /. [ S . k] £ 1. 1 

where 

N 

i=l 

and V I' [8. k] £: 1. 1. 

(z. - z) (z. - -;.) , IN 
1. 1. 

is 

(A.2) 

reducing 

Therefore, it is seen that the explained variation of the regression of 

o 
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PROPOSITION 2: The explained variation of the regression of Bik on 

is given by 
2 

R(2,k)O 

Proof: . Our regression equation is now 

S··k 1. 

where 

(A.3) 

E zi/Nh- This means we can rewrite 
iEJ 

h 
equation (A.3) in the form 

L 
Subtracting (A.2) from (A.4) and noting that E Dih 

h=l 

(A.4) 

1, we obtain 

(A.5) 

From (A.5) we can show that the variance of Sik may be written as 

(A.6) 

L 
where B L (N

h 
IN) (zh - -Z) (zh - -Z) , • (To ob tain this resul t note - in 

h=l 

2 * 

particular that Dih Dih' since Dih is either 1 or O· D~hDjk = , 

except when i = j and h = k; and E[Dih] = Nh/N). From (A.6) the 

explained variation of the regression of is seen to be 

which is 
2 . 

R(2 .. k) • o 

0 
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NOTES 

These Z-variab1es may contain expressions involving the regressors, 
e.g., if parameter variation is thought to be due to hav'ing misspecified 
the functional form in (1), despite inclusion of all relevant regressors. 

2 Other names for Cluster Analysis are Q-Analysis, Typology, Grouping, 
Clumping, Numerical Taxonomy and Unsupervised Pattern Recognition. 

3 The approach presented was motivated by the work of Aigner, 
Goldberger and Kalton (1975). They study the explanatory power of dummy 
variables in a regression equation \Jhere one independent variable is 
categorized. Here the dependent variable is the vector S. and the more 

l. 

general case where p variables are to be 'categorized' is considered. 

4 lbroughout this Subsection it is' assumed that L is given. The 
determination of L is discussed in Subsection 4.2. 

5 In Section 7 we comment on the use of more general definitions. 

5 A more general form of ~2(C) is / 
.02 

(1 K) i>vku'k (C) , where the 

are given to/eights. The use of this does not represent any additional 
problems in terms of computation of the optimum classification. A reasonable 
choice for vk is the ratio of the standard deviation of the predictions _ 
,.. 
Sik to the absolute value of their mean, with 8i = r(l,zi)' and where r 

is obtained by applying OL5 to (5). For the p = 1 case the values of 

vl, •. "v
K 

do not matter since 6~(C) is independent of k. 

7 Further considerations leading to a clustering procedure that 
avoids the estimation of r are given in Jarque (1980). 

8 The estimators we discuss in this section are not new, and are 
fully described in the sources cited. Our aim here is to illustrate their 
use in the present setting. 

9 In this section subindexes of y. and 
1-

order within each group (e.g., Yl' .•• 'YN). 
h 

x. are in progressive 
1. 

Also note that whenever y 

has a subscript h (i.e., Yh) then it refers to an Nh by 1 vector. 

10 Another procedure is obtained by assuming prior exchangeahility 
and follol,ving Lindley and Smith (1972). In addition, the analysis in 
this subsection may be extended to incorporate information about the z. 's 

l. 
as in Swamy and Tinsley (1980). 
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N 
1- ( E 

i=l 

,..2 2 
u./(N-n»/a , 
~ y where 

N N ~ 
E (y. _y)2/(N-l), Y = E y./N, U. = y. -x!8 .. and n is the 

i=l ~ i=l ~ ~ ~ 1 1 

number of parameters estimated. For (i) n = 4, for (ii) n = 10 and for 
. (iii) n = 20. Of course, alternative goodness-of-fit measures could have 

been used. 

12 Other procedures for incorporating the effects of socioeconomic 
variables into demand systems are given in Pollak and Wales (1980) and 
Williams (1977). 
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