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A CLUSTERING PROCEDURE FOR THE ESTIMATION OF ECONOMETRIC
MODELS WITH SYSTEMATIC PARAMETER VARIATION
BY
CARLOS M. JARQUE

1. INTRODUCTION 7
Assume that observations on a cross-section of, say N individuals,

are available and that a regression model is written as
vy = x;B +uy i=1,...,N, ‘ D)

where vy is the 1i'th observation on the endogenous variable Y; Xy

isa K by 1 vector representing the i'th observation on K fixed
Yy g

Yegressors Xl""’XK; ug is the i'th uncbservable disturbance and 8
isa K by 1 vector of unknown parameters.
Under (1), and provided no functional relation exists between the

regressors, the k'th element in £, say B8 would be interpreted as
g _ p

K*
the partial derivative of Y with respect to Xk - irrespective of 1.
In practice, there may be reaéons to believe the increase in Y, due to é
unit increase in Xk’ is not the same for all the individuals in the

. cross—-section. Furthermore, it may even be thought that eéch individual
reacts in its own particular way to an increase in Xk’ i.e., that each
has 'its own value' of 8, - To account for this parameter variation, B

could be replaced by Si in (1) giving

v, = xiﬁi + uy i=1,...,N. (2)

Without additional assumptions, it is not possible to proceed any
further due to the fact that - in (2) - there are NK parameters to be
estimated (apart from those related to disturbance terms) and only N

observations. Various assumptions can be made to overcome this problem.
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For instance, one may aééume paéameter variation only occurs in the
coefficient associated with the'intercept term, and therefore intfoduce
variation through the use of dummy variables. Other approaches include
Random Coefficient Models (e.g. see Hildreth and Houck (1968) and Swamy
(1971)); Switching Regressions (e.g. see Goldfeld and Quandt (1973, 1976));
Segmented Polynomial Regressions (e.g. see Hudson (1966) and Gallant and
Fuller (1973)); Piecewise Regressions (e.g. see McGee and Carleton (1970))
and Spline Regression Models (e.g. see Poirier (1976)).

Here we as;ume we can specify a set of p wvariables Zl,...,Z

P

1
that affect the value of the vectors B8.,. Also, that 2! = (2,,,...,2. )
i i il ip
is known for all the N individuals in the cross-section, where zij

is the value of Zj for individual i. Further, we assume to have

6, = F(Zi) + Ei_ i=1,...,N, (3)

where F(zi) = (Fl(zi),...,FK(zi))'; Fk(zij denotes a non-stochastic
function which is equal to the expectation of the k'th eiement of Bi
given z.3 and € =>(sil,...,€iK)' is a K, by 1 random vector with
zero expectation and VCM given by E[eieg] =8 if i =j and O
otherwise. We refer to parameter variation of the kind specified in (3)
as Systematic Parameter Variation (SPV).

In this paper we concentrate on the SPV model given by equations
(2) and (3). 1In Secticn 2 we comment on a test for SPV, and in Section 3
we suggest a two stage estimation procedure that may be uéed when there is
evidencerof parameter variation. The first stage of our estimation
procedure is presented in Section 4. The sgecond stage is discussed in |
Section 5. A numerical exercise is included in Section 6, compé%ing

three estimation procedures under various forms of SPV. Other possible

approaches to the problem of parameter variction and some concluding

remarkae are foannd in Seection- 7.



2; TESTING FOR SYSTEMATIC PARAMETER VARIATION

We note the existence of € in (3) makes Bi a random vector;
also, that if an element in Xg is constant for all i, ug would not
" be distinguishable from the varying intercept and it could be subsumed
into the latter. We assume our regression model contains an intercept
and {(without loss of generality) omit the term ‘ug in (2).

If F(Zi) were known, substitution of (3) into (2) would yield
an eqhation amenable to econometric analysis; and its estimation could
be carried out - for example - gy the use of nonlinear procedures.
Unfértunately, in general F(zi) wou;d be unknown. ‘If we estimated
equation (1) - neglecting the SPV - problems would arise because of
functional misspecification. We may, therefore, be interested in testing
the existence of SPV. We have noted F(zi) is in general unknown. So,
to derive a test for SPV we proceed under the presumption that existence
of SPV may be detected (hqpefully in many éases) by dssuming iinearity,

i.e., by setting

~ 7
Y10 Y1
1 Yo ¥ [’1“
2 <12
F(z,) = T | J= ° : , (4)
t‘z. . . { z, ,
i . . i
Y Yy
. Ko K
and testing HO: Yi = ,,. = Yﬁ = 0, where Yko is a scalar and

Ti

When we substitute (4) into our model we obtain -

o A
Vi T XY tug o : (%)

! = (Ykl""’&kp) is a 1 by p vector of coefficients, for k = 1,...,K.
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i+ = (xi,(ziéaxi)), y = Vecﬂr}; u,, = x'e,, ® denotes

where x
i+ i’i?

Kronecker product, and Vec{'} is the vector operator such that, if A
isan n by r matrix given by A = (gl,...,ar), Vec{A} is an nr by 1

vector equal to (ai,...,a;)'.

The disturbances u, L in (5) are heteroscedastic but, nevertheless,

we can easily test for SPV by using the heteroscedasticity-consistent test

suggested by White (1980 , p.820). TFor this problem the test statistic is

_ *ipt N -1 ~2 y 1 =1,v9-152
Fopy = Y RUREGGX) 70T upx, DX "RTT Ry,

II‘MZ

i=1

where v = (X;x+)—lxiy, X, is an N by (K+Kp) matrix with i'th row

given by x R=1[0; 1 is a Kp by (K+Kp) matrix, and

v . ]
i+? Kp

~

= - 1 y . = = = 4 ¢ ide
EFTLD P S B Under Ho. Yy ces 0 (and provided regular

Yx

conditions .are satisfied) F would be asymptotically distributed

SPV
as X%Kp)' Ho would be rejected for large values of FSPV‘ If Ho wvere
accepted, we could say there is lack of evi&ence of SPV and use results of
the usual regression model, or results of the random coefficient model

{e.g., see Hildreth and Houck (i968)). If 'HO is rejected, we may follow
two approaches: Firstly, we may suppose F(l,z{)' is a reasonably good
approximation to F(zi), and regard x£+§ as the estimated model;

Secondly, we may use the estimation procedure suggestéd in the next Section.

(In Section 6 this suggested procedure is found to perform better than the

first procedure in terms of goodness-of-fit).

3. A TWO STAGE ESTIMATION PROCEDURE
We assume each element of F(z) is a 'smooth function' over the
region of interest in the loose sense that, for values of z = (zl,...,zp)'

that are 'close', the values of F{(z) would also be 'close'. The

L o2iad
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motivation for the approach of this section is the idea that if the N

individuals are classified into say L groups, so that within a group *h

the values of z, are 'close', then - by smoothness of F(z) - the values’

F(zi) would be 'close' for members of that group and could be approximated

by the group mean.

Now we introduce necessary definitions. Let Ih be the subset of

the set of integers {1,2,...,N} that defines group h for a given

classification; D be a dummy variable that takes the value 1 if

ih

i€ Ih and O if hot; and N, be the number of individuals in group

h

for h=1,...,L. In addition, observe (3) and define

8(h) = & F(z)/N, . - (6)

i€l )
h
‘ . N
Similarly, define £ = T F(zi)/N and note that, using (6), this is

=l

_ L N

B= I i{'ﬁ(h) . A (N

' h=1

We refer to the vectors B(l),...,8(L) as regimes, and to B as the
macroparameter.
In terms of 8(h) our original model (given by (3) and (2) without

ui) may be written as

yi = x;si | - (8)
with
Bi = B(h) + Vih i (S I-h; h = l,... ,L 3 - (9)



-6 -

where v., = F(zi)-B(h)+-ei. It may be shown that E[Vih} = E

ih iBeyilVipd =

» ] s = -
for gll i, h, and we use 4, to denote E{vihvjh] for i=3j. It is

also interesting to note that equation (9) may be written as

B(h)Dih + vy i=1,...,N, (10)

where Vi = VihDih'

The first term in the RHS of (10) is a vector containing K step-
functions, given by
L

Fs(zi)' = 1 8(r)D
h=1

ih

and may be regarded as an approximation to F(zi}. Qur precposal is to
estimate the model using Fs(zi), i.e., to use (10) rather than (3).
This estimation problem may be more specifically stated as - how to
classify the N individuals into L groups, and - how to estimate the
regimes - so the.resulting step-functions Es(zi) are the 'best'

approximation to the elements in F(Zi)‘ To estimate Fs(zi) we may

1 (and

proceed in two stages. In the first stage, L and 11,12,..., L

hence Dih) would be determined by the use of an appropriate classification
or clustering criterion. This is discussed in Section 4. In the second
stage the parameter vectors B(1),...,B(L) and B (i.e., the regimes

and the macroparamet;r) would be estimated by the use of existing

econometric procedures. This is illustrated in Section 5. ]

Before concluding this section, we note the problem of classification
of individuals has been referred to in the econometric literature as a
'sample separation problem’. Various authors - although in perhaps

different contexts - have commented on this. For instance, Kooyman
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(1976, p.127) states that observations should be divided into groups

"that are homogeneous in respect of value of the paramgters" and notes
that - unfortunately - subdivision "is in most cases subjective".
Similarly, Poirier (1976, p.155) considers the choice of sample partition,
and notes the 'difficulty of the problem'. In turn, Chenery and Syrquin

(1975, p.162) state that

Ysplitting the sample and estimating separate
patterns for the subgroups may contribute to a
better analysis'. They note the classification

"should rely as much as possible on theoretical
arguments'. Also that '"clustering techniques may
be useful in suggesting ways to quantify theory-
based group factors, and (that) its appllcablllty
to this problem should be further studied”.

«

The approach presented in the next section (which uses clustering
techniques) provides a '1ess-subjective; soluticnvto the problem of
econometric sample separation. We hope our results lead to the solution
of similar problems (é.g., determination of knot location in spline

functions).

4. FIRST STAGE: Clustering of Individuals

The first stage of our estimation procedure deals with a classification
problem, and for this it may seem natural to use Cluster Analysis.z
Cluster Analysis is a generic term applied to a set of classification
techniques. A classification, as generally understood, allocates individuals
or entities to initially undefined grouﬁs or clusters, so that entities in
a cluster are in some sense close to one another.

In the previous section it was said that if z, was 'close’ tq Zj’

it would be assumed the conditional expectation of Bi’ given I would

be 'close' to that of Sj given 24 The term ‘close' was left undefined.
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0f course a definitiﬁn is required, and for it a distance measure has
to be given. There are many of these. For example, Cormack (1971) presents
ten different ones which have been proposed by several authors. It is not
the intention to review these here. The important point to note is that
various distance measures are used as optimizing criteria in existing clustering
algorithms (e.g., see Bolshev (1969), Everitt (1974), Ball (1971) or
Hartigan (1975)) and that these criteria have arisen in many fields (e.g.
Biology, Psychology, Anthropology and Physics)} In general, different
clustering criteria would provide different classifications. Although many
might‘seem appealing for the purpose of classif;cation; to this stage it is
not clear how these criteria relate to estimation aims of the models here
considered.

In Subsection 4.1 a clustering criterion is suggested which is
derived within an econometric estimation framework. This is obtained by
maximizing the "Overall Relative Explanatory Power" of Fs(zi) to the

- . . . N3
conditional expectation of -Bi ~given z,, id.e., F(zi).

‘- 0 > - 3 r
In Subsection 4.2 several indicators are given for the determination

of the number of groups in which the individuals should be classified.

. . L
4.1 Determination of 11,12,...,IL

For the purpose of obtaining our clustering criterion we shall use
equation (4), i.e., we shall set F(Zi) équal to F(l,z;)’. This amounts
. to taking a Taylor-series expansion of Fk(zi)’ and neglecting all the
nonlinear terms in the derivation of the clustering criterion. It has been
assumed that Fk(zi) is a smooth function, and our use of equation (4) is
based on the presumption that the 'optimumrclassification' should‘ﬁot be too

sensitive to departures from linearity. a
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We first condider the case p = 1, 1i.e., the case where Bi depends
on a single variable, say Zl' Then, 81 would be given by (set p =1

in (4) and substitute the result in (3))

rYlo Y11
Y Y 1
20 21
B-i = . . + Ei b ) (11)
: : Zi1 ,, :
| YKo Yk1 |

and the k'th element of Bi would be given by
Biy = Fk(zil) +oes s (12)

where Fk(zil) = Yko*AYklzil’ for i=1,...,8 and k =1,...,K. It

. may be shown the variance explained by the regression of Bik on Fk(zil)

is equal to

2
R2 - f&l_fffll ‘ (13)
(1,k) V{Bik]
N _ N
where V[Zl] = izl (zil- zl) /N and z, = iil zil/N. (For proof see

Proposition 1 in Appendix and set p=1).
Now we assume the individuals are classified into L groups, and
. . . s .
that Fk(zil) is approximated by a step-function Fk(zil) with value
Sk(h) for all the Nh individuals in group h. In this case we may

write (see (10))

- s ’ ) -«
Bik = Frelzyp) vy o (14)
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5 ‘— $ =
where Fk(zil) —.Bk(i)Dil-k...nFBk(L}DiL for 1 1?2,...,N and

k =1,...,K. It may be shown (see Proposition 2 in Appendix and set p = 1)

that for (14) the explained variation of the regression, say R%z k)’
. s
is given by
L N
2 h — - .2
) Y1 hil v (Zp1-zp)
R = > - (15)
ik

. ,
where z 1 15 the h'th group mean of Zl'

We take the ratio of R%Z,k)k to R%l,k) as a measure of "Relative
Explanatory Power” (this term is used by Aigner, Goldberger and Kalton

(1975)). The measure refers to the explanatory power of the step-function

approximation Fi(zil) made to Fk(zil)’ and is more formally defined as

N

L
- h o~ — .2
R2 I (712

> Row | on=1 ! -

i ALY A : k=1,2,...,k.  (16)
Ry 1 viz,]

We may see Gi is also the squared 'correlation coefficient' between
Fi(zil) and Fk(zil)’ and the complement of 'information loss' due to
a step-function approximation when (12) is true. An alternative expression

for ﬁi is obtained by using the identity

I — (z,-2) =V[z.]-= ¢ £ (z, ..-2..)°, a7
hep ¥ hIT T 1 N,-; 401 Ril™ “hl

where Z i1 is the value of Zl for the i'th. individual in group h,

giving

2 |
& =1-0/v(z;], - (18)



wiih
N, .
h

g (z,..,-
-1 4=1

- 2
z

W (19)

=
"
= [
R

The average of the '"Relative Explanatory Power" coefficients, i.e.,

the average of the K squared 'correlation coefficients’ ﬁi,...,ﬁi,

may be taken as a measure of "Overall Relative Explanatory Power".s
This is
?1K6,2 ‘
5 =g I 8 =1- D/V[Zl} s (20)
k=1

and a criterion suggested for the classification of the individuals is

5 ,
.,I. such that & is maximized. In this case, & is

to find 1 L

100"
independent of T and given that V[Zl] is fixed, the "Overall Relative
Explanatory Power' will be maximized when D is minimized. (In fact,
minimizing D dimplies maximizing ﬁi for each k =1,...,K). This is
equivalent to minimizing the within group sum of squares of Zl’ and we
may therefore use the procedure of Singh (1975) or the clustering algorithms
of Hartigan (1975, Chapter 4), MacQueen (1967), Sparks (1973) or Ward (1963)
[see also Jarque (1982, Section 3.4)]. Thé resulting classification shall
be denoted by C* and referred té as the optimun classification. .
Now we consider the more general case ﬁkere p > 1. Here we have
Bi = F(l,zi)‘%-ei, and the k'th element of Bi would be given by

'Bik = Fk(zi) + e s (1)

= » ! V i = | £
where Fk(zi) Yko%'ykzi for 1 i,..., and k=1,...,K. It can

be shown (see Proposition 1 in Appendix) that in this case

'Y
2 Yo = Tk

R,k = Vs

3

ik}



where

: N
r = ‘Z (zi— z)(zi-z)‘/N
i=1

is the VCM of the Z-variables and Z =
' i

o

zi/N. Similarly, (see Proposition
1 .

) ) . s _ :
2 in Appendix) thé regression of B, on Fk(zi) = Sk(l)Dili-..,i-sk(L)DiL

gives
i 1
o2 M B
2 L]
2,0 T VB, 1
where
L . — p— —
- 7 _ _ 1
B z (Nh/N)(zh z)(zh z)
h=1 .
and
Z o= £z /N .
h ieif i

Therefore, the "Relative Explanatory Power" referring to the k'th =

element of Si is equal to

'B'Y
2,k Yk ® Yk
& - ( ) . el : (22)
k k
(l k)
The quantities ﬂi, B, Nh and Eg' depend on a given classification C,
and to emphasize this in what follows we shall write them as Gi(c), B(C),

Nh(C) and EA(C). Using this notation we obtain that the "Overall

6
Relative Explanatory Power" is given by

) K K v!B(C) v o
R(C) = % I tﬂ‘lz((c)-= r £ k| (23)
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As Tov the p = 1 case, the clustering criterion would be to find the

classitication C* that maximizes ﬁz(C). - O

Firuio ir is interesting to note that if K = p and each element in

CI dercriined by only one Z-variable, i.e., T is given by

~ Ylo Yll 0 s s » 0 7
CENTRO DE DOCUMENTACION
Y20 0 Yop ¢+ + O CENTRO DE ESTUGIOS ECONOY
-FD = : : . : ’
0 6] e . e
Ldeo » YPP__

2
then &7(C) reduces to a form which is independent of T and equal to

p [B(C)],.

L

where {A]ij denotes the i,j'th element of the matrix A. The use of
' ) 2
identity (17) for each variable Zj’ in the expression for &7(C),

reduces this to QZ(C} = 1-(1/p)o(C), with

L Nh(c) (zh
L z
4=1 h=1 i=1

15© -7 @)
V{Zj] ’

(24)

22
| g

@(C) =

and where 1z .,(C) and E£j(C) denote, respectively, the value of Z

hij i

for the 1i'th individual in group h, and the rh'th gfoup mean of Zj’
~ when the classification is C. Therefore, we see that maximizing QQ(C) is
équivalent to minimizing ®(C). Hartigan (1975, Chapter 4),7MacQueen (1967},
Sparks (1973) and Ward (1953) provide algorithms for the minimization of
functions such as @(C). These algorithms may clearly be used for the

computation of the optimum classification C* by feeding them with the

data




: L. .
zhij(C)/(V[Aj]) (see equation (24)). a

When we tryifo extend the results to a more general form for T,
problems are encoﬁntered since 82(0) would now depend on the last p
" columns in T, 1i.e., the vectors Yi""’Yé (see (4)). However, these
may be estimated by the use of OLS on the equation resulting from
substitution of (21) into y; = x;Bi. The estimator we obtain is
¥ = Veall} = Vee L((3 u¥]) s enes (g s ¥ D' = (X_;_}&i_l_)—lX_;_y, where X, is
defined in Section 2.

It seems natural to proceed ﬁo find C* such that &Z(C) is

A 2
maximized, where &7 (C) is equal to &7 (C) (see (23)) but replacing Yy

by Yy i.e.,

. K v!B(C) vy

52 k k

®@) =L ¢ 2 (25)
— LI
k=1 Yo Y

Define
1 L Nh(.c) . _
. _ o+ _ - 1
w(c) = N hil iil .(zhi(C) zh(C))(zhi(C) zh(C)) s (26)

and recall the identity B(C) = ¥-W(C). Now substitute this last expression

for B(C) into (25), obtaining

N (C) = 2
N § Ii hy (8,.,.(©) - B (C)) 1
NK RSS! VIg |

&) = 1-

(27)
»

where Shik(c) = §k04-§ézﬁi(0), S T .

= _ 2 -
}Bhk(c) ¥,kc3+ykzh(c)
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and

~ - n'zf\

We therefore sée that 58(0) is maximized when the term enclosed in { }
~in (27) is minimized; and, for this, we may again use the clustering
&Zgﬁrithms mentioned previously, but - this time - feeding them with the
data

R PN :
PERCVIGEAN | -

In summary, to maximize the "Overall Relative Explanatory Power" of
the approximation Fs(zi) made té f(zi), the N individuals should be
classified such that (19) is minimized when p = 1, and (24) is minimized
when T = FD‘ For the more general case of a "non-diagonal™ T, the

criterion is to maximize (25). Having found 11’12""’IL the econometric

estimation of the regimes would follow.

4,2 Determination of L

In Subsection 4.1 it was assumed L was known. The proper choice of
L is important given that it will partly determine how goo& the approximation
to F(zi) is. The number of observations N will restrict the value of L,A
due to a requirement on the minimum number of observations per group in
oréer to estimate the regimes. In general, without consideiation of degrees
‘of freedom per group, the higher L the better the approximation will be.
~ However, there may be a value beyvond which no 'significantVimprovement' is
made, and it would be desirable to find this.

For example, if p =1 and Z1 has a uniform (81’32) distribution,
szC) using L groups, say GZ(C:L), would be given by Qg(C:L) = l-—(l/Lz).
[See (20) and note the variance of'a uniformly distributed rand;m variable

is simply 1/12 of the square of the range, i.e., V{Zl} = (az—al)zjlz;
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in this case, within eacﬁ group, the distribution would be uniform and

the range equal to (az—al)/L so, D = (az-al)zl(lsz)i. The values of
GZ(C:L) for L = 2,3,4,5,6 and 7 are respectively .750, .889, .938, .960,
.972 and .979. Hence beyond L =7 1little gain in ﬁ?(c) would be obtained.
In general, a procedure for determining the number of groupé is to compute
&Z(C*) (or ﬁg(c*) if p = 1) for different values of L, and to choose
that beyond which there is no substantial increase in &Z(C*) (or ﬁg(c*)

if p =1). It is interesting to note that if 'Zl,...,Zp are all

qualitative variables, so that Zj can only take one of nj values, then,

by setting L = .%1 nj, we would have &2(0*) =1 (or ﬁg(c*) =1 if
p=1). In thiSEZase, c* would be the classificétion of the individuals
with each group consisting of individuals whose z;, are equal.

The determinationrof . may also be carried Duﬁ Qithin a Cluster
Analysis framework. For instance, we could use Ward's (1963) clustering
kalgorithm on the data zhij(C)/(Y{Zj])%; and note that if the individuals
group 'appropriately' into I groups, then it is sensible to approximate

F(zi) by a step-function of 1 pieces. Several indicators for this are

found in the literature. For example, Beale (1969) suggests the use of

b, -b ( 2/p
] L Ly e o } '1.1
[p(L,-L.),p(N-L5)] ~ b N-L, | T
2771 2 L, 2 ¢ J
N-L . . . . s e
where bL = —5—-trace{B(C)}. Using an F-Distribution, a significant result

would'mean that a subdivision into L2 groups is significantly better than
into a smaller number of groups Ll. Calinsky and Har;basz (1971) propose |
the use of X = [trace{g(c)}/(1-1)}/{trgce{w(0)}f(N-L)], where 'w(c) = 2-3(C)
is the matrix of the within groups sums of squares (see (26)). Here, if A

%

has its maximum value at Lk, we would set L = L". Yet another criterion

L . .. 2 .
ie ta mos the T which mavimizea 1.°72#{WCYY. as sugecested by Marriot
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(1971). All of these indicators require the computation of B(C)
(therefore W(C) would be easily obtainable) and hence, in practice,
several of these may be calculated before reaching a final decision on the

number of groups to use.

5. _SECOND STAGE: Estimation of Regimes and Macroparameter
The second .stage of our procedure refers‘to the econometric estimation
of the regimes 8(1),...,8(L), and the mdcropardmeter B (see (6) and (7)).
In this section alternative estimators are presented. The results described

I

are conditional on a given optimum classification defined by Il""’

. L'
Two general approaches may be taken for the estimation of the regimes.
The first ﬁSes information on the variables Zl,...,Zp and treats the
model as one with systematic parameter variation. This approach is discussed
in Subsection 5.1. The second approach ignores the information on
Zl""’Zp and estimates the regimes using random coefficient regression
methods. This is treated in Subsection 5.2. Finally, in Subsection 5.3

the estimation of the macroparameter 8 is discussed.

-

5.1 Systematic Parameter Variation Approach

It has been assumed that Bi is given by Si = F(zi)ﬁ-ei, where

= ' ; v, 7 )
F(Zi) (Fl(zi)”"’FK(zi)) and Fk(zi? is an 'unkrnown smooth fﬁnctzqn .
For derivation of the clustering criterion it was further assumed that
Fk(zi) was approximated by a step-function. However, once the individuals
_have been grouped, it may seem appropriate to approximate Fk(zi) by a

linear function within each group h, for h =1,2,...,L. One may write

8, = T(h) [- +e, for i € Ih - - (28)
in - .

.
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‘ o~ P RCERT] 5 - N = .. ’ v .

and assume that E[eih] 0 for all "i,h and that E{eihajk] is equal
to Q.,_1 for 1 =3 and ‘h=%k and O otherwise. The aim now is to
° i

ectimate - I'{h).

Substitution of (28) into the model y; = xiﬁi gives the relation

— t 1 4 .
y; = ((1,zi) @xi)Vec{I‘(h)}-k-xieih i€ Ih .

.
Let y(h) = Vee{Tr(h)}, Yy = (yl,yz,...,yN v, o €, = €€ih’€§h""’5& h)',
h h

1]

. *
X4y = dtag{xi,...,xNh}, €y = Xintns and Z, be the Nh by (p+1)K
matrix with i'th row equal to ((l,zi)t@xi}. Assume the rank of Zh is

(p+1)K. Also let Xh = (Xl""’xN Y!'. Then the above reiation may be
: ‘ . :

written, in matrix form, as

(29)

y, = ZhY(h) + e*

h h °

Equation (29) is amenable to econometric estimation. For example, one
“may assume Qh to be diugonal and proceed a la Hildreth and Houck (1968);
estimating vy(h) by

-~

(30)

T S

where éh is an estimator of the VCM of a; [e.g., one may use {éh}jk

equal [ihuh]j, for j = k and equal to zero for j %+ k, where {ah}j

) . SR "l',','
is the maximum bgtween zero and {(XthghXh) Xhﬁhnh}j’ and where

. . -1., ~ Lo .2 . _ _
M = INh Zh(ZhZh} Zh, ny = Mhyh and A [aij] if A = [aij]]. From
;(h) one obtains %(h); then one may predict Ei by Vf(h}[l zi}' and

estimate g(h) by

A(h) = D) . ' (L)

N
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The assumption that & is diagonal may be avoided by following
Swamy and Mehta (1973). They consider a prior distribution for vy(h) with
mean 6(h) ‘and VCM ¢h’ and suggest using the approximation to the minimum

average risk estimator given by

A =1 -1.-1 -1 -1
_ LI 1
< - s 1 ~ * 2
where Zh = th(INh@SHQth and where Qh is an estimator of Qh (see

Swamy and Mehta (1975, p.596)).

5.2 Random Coefficient Regression Approach
A second approach to the estimation of the regimes may be to consider
the model as written out in (8) and {(9), and proceed to estimate B¢h) and

4, as in a random coefficient regression model using the data corresponding

_ to Ih‘ Although this approach neglects the information available in
Z19Z9seeesZy s it provides an alternative estimation procedure that would

be particularly useful when the number of observations in a group is small.

(In order to usg (30) one requires that Nh be greater or equal to (p+1)K).

3 = ¥ ' ] = . .
Define Vi (Vlh""’thh) and ih thvh. Then, in matrix form,

{(8) and (9) may be written as

v, = ¥,8() + & h=1,2,...,L.

.

Assuming A,  to be diagonal one may follow Hildreth and Houck (1968) and

estimate R(h) by

g = oAt T Ay (33)

where Ah is an estimator of the variance-covariance matrix of Eh (see

Hildreth and Houck (1968, p.589)).
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Alternatively, one may avoid this assumption and follow Swamy and

Mehta (1975) and use as estimator of B¢(h)

“1o-1,., 31
Ky top ) & T

i~l
h

B(h) = (X ety T®) . 3

"where r(h) is the prior mean and wh the prior VCM of B(h},

Z =X.(I
h dh Nh

(1975, p.596)).10

N ] N . .
8Ah)th and A, is an estimator of Ah {(see Swamy and Mehta

5.3 Estimation of the Macroparameter

So far, various estimators for the regimes have been presented. In

practice, one may also be interested in estimating the macroparameter B
(see (7)). For this one mayv consider the estimators of the regimes and use
DN /W)E()  (see Subsection 5.1), or E(N, /ME (R) or Z(Nh[N)é(h) (see

Subscction 5.2). Alternatively, one may regard the B(h) as a sample of

independent identically distributed vector random variables with mean B8

and VCM A, and choose to estimate B and a,al,...,a For this, one may

L
follow Swamy and Mehta (1975, Section 3). They discuss the estimation of a
vandom coefficient regression model from panel data, but their results are
also applicable in a purely cross-sectional framework. This is now
i‘l“C§rared. ‘

Firstly note that estimates of A,,...,A may be obtained from

1 L

2stimation within Ih for h=1,2,...,L (see comments below (34)). Now

E - -1 ' ty e _ vy ' _ ¢ w1 -1,, «1
e.‘__flﬂe X (X s X a.'"aXL) s ¥ = ()’l,YZ,---,YL), b(h) = (Xhzh Xh) Xhzh Yh
and S = £b(h)b'(h) - (L/LY(Eb)) (Eb' (h)). Swamy and Mehta (1975, p.600)

suggest estimating A by

)

1 ERTNEY
1 ( 1 h Xﬁ)

S_
L-1

B o

h=1

and assuming that the prior mean of B 1is r and the prior VCM is ¥,

~ T
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~

B = (x'i"lx-i-w'l)'l (x'i-ly-i-\if_lr) ’

where I = diag{xlﬁxi4-il,...,XL£X£4-EL}. It may be shown that éh i§ an
approximation to the minimum average risk estimator of B. Also, that under
‘diffuse prior information (i.e. when setting w_i equal to zero) this would .
reduce t§ a Qeighted sum of the estimators of the regimes, b(h), and

given by

1, b(h)
1 h

[ I

where . M

. —--1
~ ¢ w1 -1.-1 At y o1 -1.~-1
[+ () 5% )T J 8+ 05 %) T

[T e B el

=1 h™h

6. NUMERICAL EXERCISE

In this section, a numerical exercise is presentéd for the comparison
of three estimation procedures under altermative forms of parameter
variation. For the study, N =100, K=2, p=1 and L =5, Variable
Xil isrequal to one for all 1 = 1,2,..‘;N and the observations on X2
are generated from a Normal (10,1). The disturbance terms ul,...,uN
are>generated from a Normal (0,02); and the observations on Z are
generated from a Lognormal such that 16g(Z) is distributed as a
'Normél (3,1) (the subroutine used is described in Naylor et al. (1966)).
Four models are considered, defined by y; = xiSi%-u., for i=1,...,N

1

and where Bi is non-random and given by the following expressions
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1
W 8 -
e ]
2
”e +6,z
3+ 9,24
2 8 = ’ ,
8. 4+6,z.
5 671
—~ 6
1 9
87+§—8- (zi)
(3) B, = ,  and
1 1 812
8, +— (z.)
5 10 611 i
—~ . 8 i
16
013/ By, *08y5(2) ) .
N (4) ' Bi = 3
| Bp7exp(z;/8)g)

with

(81,8235) = (lo’lsl) s
(83,84,95,86,0) = (60’—2’15’-1f70) ,

(85,05,080,8,58,759,5,0) = (1,250,2,2,7000,3,10) , and

>

(814591458155974+0775875,0) = (200,10,1,1,1,20,10) .

Each model is estimated using three procedures which are as follows.

~

(i) Estimating Bi by éi =Tr(1 zi)' where

~_ -1
= 1 4 . .
Vee{r} (X+X+) Xjy and X "is an E by 4 matrix
: + 1 - ]
with 1i'th row equal to (l,xiz,zi,xizzi) and vy (Yl’f"’yN) .
This procedure is equivalent to taking a linear approximation

to Fk(zi) and in what remains is referred to as linear

parameter variation - LPV..
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(ii) The second procedure estimates Si by éi = 8+(h) for

i€ Ih’ where B+(h) is defined by (33) with Kh =1,
Ny

and Ih is determined by minimizing (19) ﬁsing the cubic-
root procedure of Singh (1975). It should be clear that

this is a two stage estimation procedure (equivalent to OLS
estimation within the optimum groups) and that it approximates
Fk(zi) by a step-function. The procedure is referred to

as 2S-0LS.

(iii) The third procedure estimates Bi by éi = f(h)(l zi)'
for i€ Ih’ where Vec{f(h)} is given by (30) with

6, =1 and where I is the same as for (ii). This
h Nh h

is also a two stage estimation procedure and approximates
Fk(zi) by a piecewise linear function. The procedure is
referred to as 2S-LPV.
As a goodness-of-fit measure we used R2 adjusted for degrees of
=2 11

freedom, denoted by R". The values obtained for each of the four

models, using‘tﬁe three estimators described, are reported in Table 1.

TABLE 1

Values of B> for Four Models

MODEL ' 1 2 3 4
(1) 1PV .5537 .8364 .7979 . 7499
(ii) 2S-0LS .5402 .8001 .9123 .8451
(iii) 2S-LPV .5538 .8363 L9711 .9465

The Table shows that for Model 1 (i;e. when parameter variation does

not exist) the three procédures give approximately the same §? (in fact,

these are close to the one obtained using OLS, which is §2 = ,5607).
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Comparing LPV and 25-0LS, it is observed that 2S-0LS performs better when
parameter variation departs from linearity (e.g., for Model 3 -~ where
parameter variation is quadratic for the intercept and'cubic for the slope”e
the increase in R~ is approximately 14 per cent). Comparing 2S-0OLS and
éS—LPV, one notes that 2S-0LS gives a lower §? for all four hodels.' This
is reasonable, since piecewise linear functions approxiﬁate better than
step-functions. Nevertheless, 2S-0LS should not be discafded given that it
may be a useful estimation procedure when there are groups of small size
{as mentioned before, 2S-LPV requires at ieast (p+1)X observations per
group in order for the econometric estimation to be possible). Other
groupings of the observations were used to compute the estimator 2S-LPV

and evaluate the effect of the optimum classification c*. On average, the

R

s obtained were approximately 10 per ceﬁt lower than those computed
with the optimum classification. Ove;all, these results indicate the
preference of the two stage procedures, particularly 2S-LPV, and provide
evidence that the increase in goodness—of-fit over LPV may be substantial

- {(e.g., for Model. 4 the increase in R is approximately 20 per cent when

using 2S-LPV rather than LPV).

7. CONCLUDING REMARKS

In this paper, a two stage prccedure for the estimation of'SYé:ematic
varying parameter models has been discussed. In the first stage, the
individuals would be classified into gfoups by the uselof a clustering
criterion suggésted. The second stage refers to the econometricreﬁéimatién
of the regimes, and several estimators for this were described in Section 5.

In our estimation procédure the clustering criterion is to maximize
the "Overall Relative Explanatory Power", Gg(c), of a sfep-function
approximation to the conditional expectation of Bi. We defined QZ(C)

as



2
K K R
ﬁz(c)=-llzzd?i(c)=—lﬁz%ﬁz—,
-1 k=l Ry g

. . 2 2
where ﬁk(c) is a correlation coefficient, and R(Z,k) and R(l,k) are

goodness—of—fit measures of particular regressions. When the VCM of e
in (3), i.e. &, 1is not diagonal, the equations defined by (3) are a system
of seemingly unrelated regressions, and better measures of goodness-of-fit
" exist for such models (e.g., see Buse (1979)). An alternative definition of
"Overall Relative Explanatory Power" isAthe ratio of Buse's goodness-of-fit
measures for the systems (12) and (14). Unforﬁynately, this ratio depends
on unknown quantities, such as  and, more importantly, for our probiem
this criterion is not numerically managéable. For these reasons we limited
our discussion to the goodness-of-fit measure GZ(C).

Other approaches to the estimation problem may be considered. One
may be to take the model as written in (8) and (9), and assume Vi, 1is

normally distributed. We could then impose - N

h > K, and maximize the

likelihood function with respect to the classification and the parameters.
Another may bg to consider finding the classification that optimizes a
function of the second order moments of some estimator of the regimes.

An inconvenience with these approaches is that, unlike the two stage
procedure\that uses ﬁz(C), we may end ué with a numerically unmaﬁééeable
clusteriﬁg criterion; and searching for the optimum classification by total

enumeration of alternatives would be computationally inefficient due to the

large number of these.
Throughout this paper, our discussion has been made assuming wé have

a cross-section of individuals. Of course our results are applicgble when

having observations on any set of entities,

-

such as farms in a region or

banks in a particular country. Also, our findings are applicable in
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time-seiies siudies.” Here, we would need to modify siightly the algorithms
used for the classification of the observations (as in McGee and Carleton
(1970}), =o the resulting groups contain subsequent observations in time.

Before concluding we will briefly menfion some results of a Family Budget
study which applied the two stage procedure suggested. The data was obtained
from the 1975 Mexican Income-Expenditure Household Survey of the Mexican
Ministry of Labor. We used the Extended Linear Expenditure System (ELES)
derived by maximization of a Stone-Geary utility fqnction, obtaiﬁing a system
of equations for expenditures with current family income as the regressor.

Given that the study used cross-sectional data we postulated that the
parameters of this system of equations were related to socioeconomic variables,
such as income and family size and age and occupation of the heaé of the
household 12. The problem was how to group the 521 households for which data
was available (only the Mexico City households were considered) so the
parameters of the demand system were approximately the same.

The first step was to determine the number of grups into which the -
households were to be classified. For this, the 522 ({C*) criterion was
considered. However, in thisrapplication we had a system of m equations, so
we took the average of the m individualﬁRz'é as the criterion to optimize."

We call this the "Average Overall Refative Explanatory Power" and denote it

~

by R

4

{C*). The values for RE(C*) fqr L =2,...,20 are reported in Table 2,
together with the increasé in RE{C*) obtained when passing from L to L + 1.
Although the.choice of L is somewhat arbitrary, we decided to ée L = 14 because
it gives a value of RE (C*) over .9, and because - beyond this - little
increase in Rz {C*) is obtained. [For example, the increase in <Rz {C¥)
fromL = 13 to L = 14 ‘would be .015; similarly, the increase from L = 14 to

L = 15 would be .001.]
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TABLE 2

Maximum 'Average Overall Relative Explanatory Power'

2, % * 2 2
Lo & e | L | &eh aRen
1 .000 - 11 - .871 . .010
2 453 453 12 884 .013
3 618 165 13 895 .011
4 .699 .081 14 910 - .015%
5 .740 .041 15 911 .001
6 . 780 .040 16 .912 .001
7 827 047 | 17 913 .001
: 843 .016 18 916 .003
9 857 014 19 1919 .003
10 861 .004 20 919 .000

The classification C* corresponding to L = 14 was taken, and
some characteristics of the groups forming this were computed. The
resul#s are presented in Table 3. In the column relating to occupation
we have written, for each of the 14 groups, the occupational category
having most frequent occurrence, together with the corresponding frequepcy.
For example, group 2 is formed by 24 households from which 23 have
the head of the household unemployed (U). (We use W, E and T to
denote, respectively, Worker,'Entrepreneur and Technocrat). Other
variables included in the Table are meanrfamily income, mean family size,
and mean average age of the head of the household. A striking feature
of the cluster;ng is the marked separation of households by occupationalr
categories,mofe than by income classes (e.g., groups 1 and 3 have
similar values for family income, size and age of head; and differ
because group 1 is formed by Upemployed whereas group 3 is forméd by
Worker households). This indicateé, apparently, that occupgfion exerts

one of the main influences in the determination of consumption behaviour
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TABLE 3°

Characteristics of Groups from Cluster Analysis

. Number
Group | Occupation Income  Family Size Age in

Group
1 U(24/726) 715. 8.0 55.7 24
2 U(23/24) 1101. 3.3 65.9 24
3 W(41/42) 540. 9.8 49.0 42
4 W(95/95) 464, 7.1 38.3 95
5 W(68/69) 835. 3.6 31.8 69
6 W(47/47) 859. 4.4 54.6 47
7 E(13/28) 668. 10.4 45.9 28
8 E(41/41) 911. 5.4 42.2 41
9 T(62/65) 1154. 5.8 38.9 65
10 T(37/41) 1701. 3.1 31.9 41
11 T(21/26) 3534, 3.6 39.4 26
12 T(6/10) 5538, 3.1 9.3 10
13 T(5/5) 7196. 3.0 44.8 5
14 T(4/8) 9614, 4.0 41.0 4

We could,of course, estimate the éLES for each of these groups of
households of 'homogeneous behaviour'. In some of these groups,
however, we have few obser?ations; for-example, in groups 13 énd 14 we
have, respectively, 5 and 4 households (see last column in Table 3).
Also, in some groups we have two or more occupational categories; for
instance, group 11 has 21 Technocrats; 2 Entrepreneurs; 2 Workers
and 1 Unemployed.  Based on thg results of the Cluster Analysis, we

decided to redefine the groups to have

(i) sufficient number of observations for estimation; and

{(ii) readily identifiable domains of study.
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This required merging some groups, and group-reassignment of a few
households. As pointed cut previously, the most immediate split of the

households is by occupational category.

Unemployed Households

Regarding the Unermployed, the natural further break-up was'by familyvsize,
with splitting value 6 (The 'mostly Unemployed groups', i;e.,

. groups 1 and 2 were such that group 1 had households

of size basically greater or equal te 6 and group 2 less than 6.

Also, there were no clear income nor age differentials between these
groups). We defined large (L) households as those with family size
greater or equal to 6, and small (S) households as those with family
~size less than 6. So, we divided Unemployed»households ;nto 2 groups:

L and S; hereafter referred to as UL and US.

Worker Housenolds

Regarding Workers, we had that groups 3 and 4 were large (L)

size households; in group 3 most headswere over 45 years of age, and

in group 4 most were under 45. We define households where the head is
over 45 years of age as old (0) and those where the head is under 45
years of age as young (Y). [It is interesting to note that LPW (1977,
p.122) also used this breaking point for age classification]. We also
had that groups 5 and 6 were smali {(S) size VWorker households; with.
group 5 being formed by young (Y) households and group 6 by old (0)
households. [In general, groups 3 and 4 contained households with lower
income than groups 5 and 6, reflecting that small hopsehold;‘have higher
incomes]. Because of these features, we decided to éivide Worker house-

holds intec 4 groups: 1Y, LO, SY and SO; hereafter referred to as

WLY. WLO. WSY and WSO.
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Entrorrencur Households

Regardiﬁg Ehtrépreneurs, we had thatrgroup 7 was formed by large (L)
houseﬁolds énd group 8 by mainly small (S) households. [Income and age
differentials were not very significant among these gréups,,except for

the fact that small size households tend to have slightly higher
incomes]. 'So, we divided Entrepreneur households into 2 groups: L

and S; hereafter referred to as EL and ES.

Technoerat Households

-Finally, regarding Teckﬁocrats, we observed that groups 9 and 10 Qere
basically 'low-income' (relative go other Technocrat) households, with
incomes below 3000 pesos per capita per month. Households with

incomes below this level were qualifiéd by the symbol Il. Between
groups 9 and 10 no clear age differentials are apparent; but group 9

was formed basically by large (L) size households and group 10 by small
(S) hqufcholds. [Again ﬁhere was a téndency for smaller households to
have higher incomes]. We then had group 11, consisting of 'middle- |
income' households, having incomes between 3000 and 5000 pesos.
Households with income in this interval were qualified by the symbol 12
[It is interesting to note that,‘out of all the Unemployed, Worker or
Entrepreneur households, only 11 had incomes within this interval, and
none higher than 6230 pesos]. Finally, we had ‘'high-income' households
in groups 12, 13 and 14; these had incomes over 5000 pesos and were
qualified with the symbol 1I3. So, we formed &4 groups (note we

| previously had 6) of households of Technocrats} namely: IlL, I1S, I2

and 13; hereaftef referred to as_ TI1L, TI1S, TI2 and TI3.
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TABLE 4

Characteristics by Type of Households

Type of , R ’ Number in
Household Income Family Size Age Group
Unemployed :
L 761.30 7.9 : 55.4 | 23
S 1613.75 3.2 59.9 29
Worker
L,Y 422.33 7.9 36.6 89
L,0 726.57 8.2 51.5 51
S,Y’ 874.41 3.8 31.9 68
S,0 849.89 3.9 56.9 33
Entrepreneur _
L 832.74 8.1 44,6 31
S 1159.93 4.0 41.8 30
Technocrat
11,L 1131.85 7.5 41.4 , 45
11,S 1565.71 ‘3.8 36.0 64
12 - 3693.35 3.9 41.1 20
I3 6818.30 3.2 42.1 i3

In all, we ended with 12 groups - oOr domains of study —Acontaining
different types of households. The average income, family size and age
of the head of the household, together with the number of households in
each group are given in Table 74. Average income for large households
is lower than for small households (other attributes equal). Also,
average incomes for Unemployed, Worgers and E trepreneurs ére smaller
than for Technocrats. Large households (UL, WLY, WLO, EL and TI1lL)
have an average of approximately 8 members, and small householdé (Us, wsy,

WSO, ES and TI1S) have an average of approximately 4 members.
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Having identified these 12 groups of households of homogeneous
_consumption behaviour (relative to the parameters of the demand system),
we proceeded to the estimation of the ELES within each group. The complete

description of the results is given in Jarque (1982, Chapter 9).
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APPENDIX

PROPOSITION 1:  The explained variation of the regréésion of Big on

, . YA
Fk(zi) is given by R(l,k)'

Proof:  Equation (21) defines
Bik = Fk(zi) + €5k : a.1)
where
- X 1
Flzg) = v + ez -

— = !
We knov E[B;, ] = EiEe/i[Bik}' From (A.1l) we ses Ee/itgik} Yeo T Y21+

It follows that

- - 1
E[B ] = Yo * YRZ > , (A.2)
» _ N
where z = I Zi/N' We also have
i=1
VIByd = VB (B ] + EV T80 .

-

> ] . »
But Ee/igsik] is _Yko*'ykzi and Ve/i[Bik} is _V[Eik}, reducing

ViSik} to

ViB, 1 = Yl'(z‘(k + Ve, 1,

where

LT e B

Z (zi-z)(zif-;}'/N .

Therefore, it is seen that the explained variation of the regression of
: ; : v N . . -
Sik on Fk(zi) is simply Yi =Y, over V{Bik], which is equal to

2

@, o

R



PROPOSITION 2: The explained variation of the regression of Bik on

s . . 2
Fk(zi) is given by R(Z,k)'

Proof: Our regression equation is now
s ] : '

Bie = Flzg) + Vi o Y

where
s L
F (z.) = £ B,(h)D,. .
k71 h=1 k ih
s s - A _ .
By definition, R8(h) iEEI F(zi)/Nh (see (6)). We have Fk(zi) Yko-kykzi,
h
_ [ o = . ' .
so, Sk(h) = Yko4-Ykzh’ where 2N jﬁgf zi/Nh’ This means we can rewrite
“h

equation (A.3) in the form

. L -— ) N

o 1
Bik = hil,(YkO-FYkzh)Dih + v : (A.4)
L
Subtracting (A.2) from (A.4) and noting that b Dih = 1, we obtain
o h=1
. L _ _
— 1 - -
B~ ElB; T = vy hil (z, z)nih + v (A.5)

From (A.5) we can show that the variance of Bik may be written as

2 ,
VBl = v By *+ Vivi 1, | : (A.6)

where B =

(N, /N (z, -2){(z, -2)'. (To obtain this result note - in
h h h h ]

[T

1

. 2 . L. - _
particular - that Dih = Dih’ since Dih is either 1 or 70, DihDjk =0
except when i =3j and h = k; and E{Dih] = Nh/N)' From (A.6) the
explained variation of the regression of Sik on Fi(zi) is éeen to be

1 . . 2 ‘ :
Yk]Byk over V{Bik], which is R(Z.k)' , O
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NOTES

I These Z-variables may contain expressions involving the regressors,
e.g., if parameter variation is thought to be due to having misspecified
the functional form in (1), despite inclusion of all relevant regressors.

2 Other names for Cluster Analysis are Q-Analysis, Typology, Grouping,
Clumping, Numerical Taxonomy and Unsupervised Pattern Recognition.

3 The approach presented was motivated by the work of Aigner,
Goldberger and Kalton (1975). They study the explanatory power of dummy
variables in a regression equation where one independent variable is
categorized. Here the dependent variable is the vector Bi and the more

general case where p variables are to be 'categorized' is considered.

% Throughout this Subsection it is assumed that L is given. The
determination of - L 1is discussed in Subsection 4.2,

£ 3 * = >
¥ In Section 7 we comment on the use of more general definitions.

€ A more general form of ﬁz(C) is (1/K)zv dd(C), where the Vi
are given weights. The use of this does not represent any additional
problems in terms of computation of the optimum classification. A reasonable

choice for Vi is the ratio of the standard deviation of the predictions

Bik to the absolute value of their mean, with éi = %(l,zi)' and where T
is obtained by applying OLS to (5). For the p = 1 case the values of

v sV

LR do not matter since ﬁi(c) is independent of k.

K

7 Further considerations leading to a clustering procedure that
avoids the estimation of T are given in Jarque (1980).

8 The estimators we discuss in this section are not new, and are
fully described in the sources cited. Our aim here is to illustrate their
use in the present setting. '

9 In this section subindexes of vy and x, are in progressive

order within each group (e.g., Yis-ees¥y ). Also note that whenever ¥y
h

has a subscript h (i.e., yh) then it refers to an Nh by 1 vector.

10 Another procedure is obtained by assuming prior exchangeability
and following Lindley and Smith (1972). 1In addition, the analysis in
this subsection may be extended to 1ncorporate information about the zi’s
as in Swamy and Tinsley (1980).
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N

_ _ - 2
1R g given by R2 =1-(¢t ui/(N—n))/cy, where
i=1
2 N 2 N P
= _v - 7 = S 2y —x'8 .
oy = 151 (y; - D7/ (N-1), ¥ izl y;/N, vy =y, -xiB, and n is the

number of parameters estimated. For (i) n =4, for (ii) n = 10 and for
“(iii) n = 20. Of course, alternative goodness-of-fit measures could have
been used. .

12 other procedures for incorporating the effects of socioeconomic
variables into demand systems are given in Pollak and Wales (1980) and
Williams (1977).
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