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Abstract

We model a matching market with institutions – inspired by the assignment of social

housing in Paris – as a three-sided market. Institutions own objects and have agents at-

tached to them. Agents have preferences over objects. Objects have priorities over institu-

tions. We show that fair assignments satisfying distributional constraints may fail to exist,

and propose a sufficient condition – the over-demand condition – under which we prove

existence. Existence derives from the construction of a new algorithm, the Nested Deferred

Acceptance (NDA) algorithm, which combines a one-to-one matching between agents and

objects and a one-to-many matching between objects and institutions. If interrupters are

eliminated from the preference list, as in Kesten (2010), the NDA algorithm produces an

assignment which is fair, Pareto optimal among fair assignments and strategy-proof for

agents.
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∗Université Paris 1 and Paris School of Economics, francis.bloch@univ-paris1.fr
†Colegio de Mexico, dcantala@colmex.mx
‡Universidad Popular Autónoma del Estado de Puebla, damianemilio.gibaja@upaep.mx

1



1 Introduction

This paper studies matching markets intermediated by institutions. Institutions own objects

and agents are attached to institutions. In autarky, institutions assign their objects to their

agents. But they may also consider a more flexible assignment by exchanging objects with

other institutions, thereby increasing the choice set of all agents. In this paper, our objective

is to study these flexible assignment rules, letting agents have preferences over the entire set of

objects, objects having priorities over institutions, and institutions having preferences over the

assignment of objects to agents. We also suppose that institutions face distributional constraints:

the number of agents attached to one institution who receive an assignment must be equal to a

fixed quota, typically equal to the number of objects that the institution initially owns.

Matching through institutions occurs in a large variety of situations. In Paris, social housing

units are assigned according to a complex mechanism, where four different institutions pool

their apartments and propose lists of applicants. These four institutions (the State, the city of

Paris, local councils and private firms) contribute at different degrees to the financing of social

housing and receive fixed quotas on the vacant apartments which are assigned every month

to applicants.1 The assignment of seats in study-abroad programs in American colleges and

universities is another example of matching through institutions. Many liberal arts colleges

maintain study-abroad programs with permanent staff and office space. Because all colleges

cannot be present in all countries, they pool resources, allowing students from other colleges and

universities to participate in their programs. These agreements are sometimes based on transfer

payments and sometimes made on a quid pro quo basis, where the number of incoming and

outgoing students are matched for each university.2

Increasing the choice of students is also the objective of inter-district school choice programs, like

the one sponsored by the state of New Jersey.3 These programs allow school districts to exchange

students and to specialize in specific programs, like arts programs or programs for students with

special needs. Pupils from one school district can be assigned to a school in another district up

1For a detailed description of the mechanism, see the annual report on assignment of social housing in Paris

(APUR, 2014).
2In most cases, the agreements among colleges are bilateral. In some cases, like in the University of California

system, there exists a central clearing house assigning students to the programs offered by different universities.
3See www.nj.gov/education/choice for a description of the system.
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to a limit in the number of seats. Inter-district school programs are either based on financial

transfers across school districts or, as in the case in New Jersey, on state funding. A final example

of matching through institutions are tuition exchange programs for children of staff and faculty

members of universities.4 Through tuition exchange programs, children of faculty and staff can

obtain a reduction in tuition when studying in other universities. The number of incoming and

outgoing students in each university must be equalized, in order to maintain a financial balance

among universities. A key difference between these applications is the role of institutions in

the final assignment: they do not intervene in study abroad programs (see Abraham, Irving

and Manlove (2007) for a model capturing the situation), they do in the Paris social housing

programs where institutions keep track of households attached to them (formalized by priorities

of institutions over household-apartment pairs) and their apartments (by setting priorities of

institutions over their apartments, thus they can decide to keep top priority over their apartments,

or limit the access to some institutions).

In this paper, we model matching through institutions as a three-sided market involving agents

(which we refer to as “households”), objects (which we refer to as “apartments”) and institutions.

Our main objective is to obtain assignments which satisfy the classical properties of individual

rationality, non-wastefulness, fairness and strategy-proofness. The main contributions of the

paper are: 1. to allow priorities of institutions on household-apartment pairs to be perfect

complements; 2. to propose a new algorithm, the Nested Deferred Acceptance (NDA) algorithm

which extends deferred acceptance to matching through institutions. The NDA combines two

different deferred acceptance algorithms. In the first deferred acceptance algorithm (the “outer

loop”), each household asks for her most preferred apartment among those which have not yet

rejected her. Given this list of demands, we run a second deferred acceptance algorithm (the

“inner loop” ) among institutions. Each institution chooses a set of apartments that maximizes

its preference and does not exceed its vector of quotas. If more than one institution is interested

in one apartment, ties are broken according to the priority of each apartment. The process is

repeated until apartments are assigned to households in such a way that institutions respect their

quotas. Going back to the outer loop, we next ask rejected households to apply for their next

preferred apartment and the procedure continues until no household is rejected.

We first prove that the NDA mechanism is strategy-proof for households and outputs a fair

4See Dur and Ünver (2014) for a description of these programs
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assignment which is Pareto undominated by any fair assignment, when there is no distributional

constraint. When we require to full fill a quota constraint, the distributional constraints may

lead to nonexistence of feasible assignments. Even when feasible assignments exist, they may

be very constrained, and can be subject to justified envy. In order to prove existence of fair

assignments, we need to relax the distributional constraints by assuming that each institution

has a sufficiently long list of agents so that every apartment is acceptable to some agent in

the list. Under this sufficient condition – termed the over-demand condition – we show that

fair assignments satisfying distributional constraints exist by extending the deferred acceptance

algorithm to our three-sided market. We observe that, even under the over-demand condition,

the NDA does not necessarily output a fair outcome. As in Kesten (2010), the problem comes

from the presence of “interrupters” – institutions which are temporarily assigned to apartments

that they will not be assigned to in the final matching, thereby blocking access of apartments to

households from other institutions. Unlike Kesten (2010) our interrupters have to be deleted so

as to reach a fair assignment, not Pareto efficiency, which means that it does not make sense to

ask for consent of agents in our model.

The NDA with Interrupters (NDAI) improves the NDA by dropping apartments from the pref-

erences of interrupter institutions. Our main result shows that the output given by the NDAI is

fair, Pareto undominated by any other fair assignment satisfying the distributional constraints

and strategy-proof. (Recall that, by contrast, the Efficiency Adjusted Deferred Acceptance Mech-

anism (EADAM) of Kesten is manipulable because interrupters are students who strategically

report their preferences while in our case interrupters are institutions which do not submit pref-

erences.)

We also analyze the case where the same agent can appear on the list of multiple institutions.

(This is the case for example in the assignment of social housing in Paris). We show that fair

assignments do not necessarily exist and that the NDAI then produces a matching which is not

fair, but only fair among agents belonging to the same institution.

Even though the two models are not identical, our matching market bears strong similarities to

the matching with distributional constraints studied in Kamada and Kojima (2015a), (2015b)

and (2017). Inspired by the assignment of doctors to hospitals with flexible regional quotas, they

propose a very general model where matching can be flexible across hospitals in the same region,

and regions have preferences over the distribution of doctors to hospitals in their jurisdictions.

4



We show that the NDAI algorithm can be adapted to matching with distributional constraints,

by reinterpreting regions as “institutions”, doctors as “households” and jobs in hospitals as

“apartments”.

The matching with contracts approach (Hatfield and Milgrom (2005)) has been successful in

relaxing the substitute condition by Kelso and Crawford (1982) and establishing that the Gen-

eralized Gale-Shapley algorithm outputs a stable allocation, even in settings where the set of

stable matchings has no lattice structure, like in Hatfield and Kojima (2008 and 2010), Sönmez

and Switzer (2013), Aygün and Sönmez (2012), Kominers and Sönmez (2016) and Hatfield and

Kominers (2017). Contracts, however, are two-sided, which limits the scope of the analysis to

pairwise stability (see example in Appendix A), which is not the natural stability restriction in

our application. Our problem can also be modelled as a network, as in Ostrovsky (2008) and Hat-

field and Kominers (2012), who extends the analysis and fixed point techniques to supply chain

networks and establishes the stability of upstream-downstream contracts under same-side substi-

tutability and a new substitutable condition, called cross-side complementary. Our three-sided

approach is less general than Ostrovsky (2008) since we do not deal with networks of any size, and

our preference/priority structure is also restricted. In contrast, it is less restrictive in term of com-

plementarity. Rephrasing our problem in his setting, specifically section V.C, two-sided markets

with complementarities, one side of the market can be interpreted as institutions that see both

types of agents on the other side, households and apartments, as complements. While Ostrovsky

(2008) and Hatfield and Kominers (2012) require households and apartments to be substitutable

for one another, we dispense of this assumption since we deal with cases where an institution

can allocate apartments exclusively to large families, for instance. Another difference lies in that

fact that households have preferences defined on apartments, not on institutions. Matching with

couples is another branch of the literature considering preferences/priorities exhibiting comple-

mentarities. Typically stability is not met but under restrictions on preferences/priorities (Blum,

Roth and Rothblum (1998), Cantala (2004), Klaus and Klijn (2005), Pycia (2012), Sethuraman

et al. (2006) and Nguyen and Vohra (2014)), or with high probability in large markets (Kojima,

Pathak and Roth (2013), Ashlagi et al. (2014)).

The problem we consider is related to the rapidly emerging literature on matchings with con-

straints. In the school choice context, a number of recent papers have analyzed the effect of

constraints resulting from affirmative action considerations. One stream of papers interprets
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affirmative action as “leveling the playing field”, as in Kojima (2012) and Hafalir, Yenmez and

Yildirim (2013) and Kominers and Sönmez (2013). Another stream of papers closer to our mo-

tivation consider affirmative action is an objective per se, formalized either by the existence of

quotas as in Abdulkadiroğlu (2003), Abdulkadiroğlu, Sönmez (2003) and Hafalir, Yenmez and

Yildirim (2013), or bounds as in Ehlers (2010), Ehlers, Hafalir, Yenmez and Yildirim (2014),

Fragiadakis and Troyan (2015) and Bó (2016). One of the objective of these papers is to refine

stability concepts and the deferred acceptance algorithms to conform to the bounds and quotas.

Echenique and Yenmez (2015), Erdil and Kumano (2014), and Biró, Klijn and Pápai (2016)

consider diversity as an objective of the school district and explore the tension between diversity

objectives, stability and efficiency of priority systems and matching rules. Nguyen and Vohra

(2017) have a different approach and use Scarf’s Lemma to implement proportional distributional

constraints.

Our analysis also bears a close connection to exchange markets with balanced constraints re-

cently studied by Dur and Ünver (2016) and Biró, Klijn and Pápai (2015). These papers model

exchange programs (like the tuition exchange for children of faculty members or the Erasmus

exchange program’ in European universities) where a balance must be kept between the number

of incoming and outgoing students. Both papers consider a two-sided (rather than three-sided)

matching problem, where colleges have preferences over students, and students have preferences

over colleges. In Dur and Ünver (2016)’s tuition exchange model, students are ranked inside

each college according to an exogenous priority (for example, the length of tenure of a faculty

member). Dur and Ünver (2016) show that balancedness may lead to impossibility results, when

associated with different natural axioms, like individual rationality or fairness. Their analysis

focuses on efficiency and they propose a new procedure based on the Top Trading Cycle algo-

rithm (rather than the Deferred Acceptance algorithm). Biró, Klijn and Pápai (2015) also focus

attention on an extension of the TTC algorithm to analyze student exchange programs where a

balancedness condition holds.

The paper is also related to the literature of three-sided markets. Unlike Alkan (1988) and

Huang (2007), we assume that only the priorities of institutions are defined over the other two-

sides of the market. To establish our existence result under quota restriction, unlike Biró and

Mc Dermind (2010), we impose that all households only belong to one institution.

Finally, we note that the assignment of social housing that motivated our study has recently
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been analyzed in a series of papers (Leshno (2014), Bloch and Cantala (2016), Schummer (2016)

and Thakral (2015)) which focus on very different aspects of the problem – the revelation of

persistent information on types in Leshno (2014), the dynamic sequence of decisions in Bloch

and Cantala (2016), the manipulation of orders in Schummer (2015) and multiple waiting list

mechanisms in Thakral (2015).

As far as we are aware, we are the first one to deal with a pattern of perfect complements in

matching markets and study the nesting of two Deferred Acceptance algorithm, which ties the

acceptance of agents on the three sides of the market, While we deal with strict quotas in the

main text, we show that it also applies to settings with maximum quotas, as in Kamada and

Kojima (2015b). The NDAI, however, does not adapt to general distributional constraints, like

Goto, Kojima, Tamura and Yokoo (2016).

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 presents

preliminary results on the existence of fair assignments and introduces the over-demand condition.

Section 4 describes the Nested DA algorithm, and Section 5 contains our main results. In Section

6, we draw a comparison between our model of matching through institutions and matching with

distributional constraints and regional preferences as in Kamada and Kojima (2015b). Section 7

contains our concluding comments. All proofs are collected in the Appendix.

2 The Model

A matching market with institutions is an 8−tuple (I,Q,H, τ, A, P,�, π) where:

1. I = {1, 2, ..., N} is a finite set of institutions, a generic institution is i;

2. Q = (qi)
N
i=1 is a vector of quotas, where qi is the quota of institution i, a generic quota is q;

3. H = {h1, ..., hH} is the finite set of households, a generic household is h;

4. τ : H → I is a type function, which assigns to every household an institution τ(h). Con-

versely, H(i) = {h ∈ H | i = τ(h)} is the set of agents attached to institution i.5

5We assume in most of the analysis that τ(i) is a function– every agent is attached to a single institution. We

consider the general case where τ(i) is a correspondence – households can be attached to multiple institutions in

subsection 5.3.
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5. A = {a1, ..., aA} is the finite set of apartments, a generic apartment is a;

6. P = (Ph1 , ..., PhH ) is a vector of households’ preferences, Ph is the strict preferences of

household h ∈ H over A ∪ {∅}; aPha′ means that households h prefers a to a′, an apart-

ment a is acceptable for household h if aPh∅. Let Ph : a1h , a2h , . . . aAh
, and Rh be the

antisymmetric preference list where aRhb and bRha if and only if a = b;

7. π = (πa)a∈A is the profile of priorities of apartments over institutions; πa is the priority

of apartment a over institutions i ∈ I. Let A(i) = {a|iπai′ for all i′ ∈ I} be the set of

apartments where institution i has top priority.

8. For all i ∈ I, �i is the preference of institution i over sets of pairs (a, h) for h ∈ H(i). Each

institution has preferences over the assignment of apartments to its households. We write

(a, h) �i ∅ if the pair (a, h) is acceptable for institution i. This general formulation allows

for different interpretations. Institutions may be benevolent, and inherit the preferences

of the agents, so that �i is obtained directly from the preferences Ph of h ∈ H(i). Alter-

natively, institutions may have their own fixed set of preferences, for example prioritizing

among agents, or aiming at matching apartments to households with fixed characteristics

independent of the preferences Ph, like the size of the household.

We assume that for all i ∈ I the priority �i is responsive on elements in 2A×Hi , i.e. for all

subsets of pairs U ∈ 2A×Hi and all pairs (ar, hr), (as, hs) ∈ (A×Hi) \ U we have that

i. U ∪ (ar, hr) %i U ∪ (as, hs) if and only if (ar, hr) %i (as, hs), and

ii. U ∪ (ar, hr) �i U if and only if (ar, hr) �i ∅.

When matching markets are intermediated by institutions, matchings are not simply defined as

two-sided matchings between households and apartments, but as three-sided matchings associat-

ing households, institutions and apartments. The mechanism we propose consists in two separate

assignments: we first assign apartments to institutions, then assign households to pairs consisting

of one apartment and its matched institution. We thus describe an assignment as: (i) a many-

to-one matching between apartments and institutions, and (ii) a one-to-one matching between

households and pairs composed by one apartment and one institution. These assignments are

formalized in the following definition.
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An assignment µ = (θ, ϕ) is a pair such that:

i. θ : A ∪ I → 2A ∪ I ∪ {∅} where

i.a θ(a) ∈ I ∪ {∅},

i.b θ(i) ∈ 2A and |θ(i)| = qi,

i.c a ∈ θ(i) if and only if θ(a) = i;

ii. ϕ : (A× I) ∪H → (A× I) ∪H ∪ {∅}, where

ii.a ϕ(h) ∈ A× I ∪ {∅},

ii.b ϕ(a, i) ∈ H ∪ {∅},

ii.c ϕ(h) = (a, i) ⇔ ϕ(a, i) = h. The corresponding projections are ϕA(h) = a and

ϕI(h) = i;

iii. θ(a) = i if and only if ϕ(h) = (a, i) for some h ∈ H.

Conditions i. a, b and c define the many-to-one matching θ between apartments and institutions,

taking into account the distributional constraint imposed by the quotas per institution. Condi-

tions ii. a, b and c define the one-to-one matching ϕ between households and pairs composed

by one apartment and one institution. Condition 3 defines a consistency condition between the

two matchings, by requiring that whenever a household is assigned to a pair consisting of an

apartment and an institution in ϕ, the apartment and institution are assigned to each other in

θ.

The match of h ∈ H is ϕ(h) ∈ (A× I) ∪ {∅}, h is unmatched if ϕ(h) = ∅. The assignment of i

is µ(i) = {(a, h) ∈ A×H : a ∈ θ(i) and ϕA(h) = a}.

We illustrate the definition of the assignments θ and ϕ with the following example. Consider

(I,Q,H, τ, A, P,�, π) a market with institutions where I = {1, 2, 3}, H = {h1, h2, h3, h4, h5},

A = {a1, a2, a3, a4}, a vector of preferences �i, a vector of preferences P and a profile of priorities

π. The vector of quotas is Q = (1, 2, 1), and the type function is given by H(1) = {h3}, H(2) =
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{h4, h5}, H(3) = {h1, h2}. A typical assignment for this market is represented as follows

µ =


h3 h5
ϕ(h3)︷︸︸︷
a2

2

ϕ(h5)︷︸︸︷
a4

2︸ ︷︷ ︸
θ(2)

h1
ϕ(h1)︷︸︸︷
a3

3︸ ︷︷ ︸
θ(3)

∅

∅︸︷︷︸
ϕ−1(∅)

1︸ ︷︷ ︸
θ(1)

h2 h4 ∅
ϕ(h2)︷︸︸︷
∅

∅

ϕ(h4)︷︸︸︷
∅

∅

ϕ(∅)︷︸︸︷
a1

∅


︸ ︷︷ ︸

θ−1(∅)

.

In this assignment, institution 1 ends up with no apartment, and hence does not fulfill its quota.

Institution 2 is assigned the two apartments a2 and a4 which are given to households h3 and

h5, and the quota is fulfilled. Institution 3 also fills its quota, obtaining apartment a3 which is

assigned to household h1. Apartment a1 remains unassigned.

We now define the choice functions of institutions. Consider sets of the form U = {U ∈

2A×H(i)|neither households nor apartments are paired twice in U}. The set U collects pairs of

apartments and households attached to institution i such that every apartment and household

only appear in one of the pairs. For any institution i ∈ I, we define the choice function Chi as

a mapping choosing the pairs with the highest preference for i in U : for all (U, qi) ∈ 2A×H(i)×Z+,

the choice of i is the set Chi(U, qi) = max
�i
{u ⊆ U | (|u| = qi) and u ∈ U}.

We now extend classical properties of the assignment µ to matching with institutions. An

assignment µ is individually rational if

i. for all h ∈ H either ϕA(h)Ph∅ or ϕ(h) = ∅, and

ii. µ(i) = Chi(µ(i), q1).
6

In words, an assignment is individually rational if both households and institutions – the two

sides of the market which are endowed with preferences, prefer the outcome of matching µ to what

they would get by not participating in the matching, ∅. We assume that the set of individually

rational assignments is nonempty.

An assignment µ is non-wasteful if no household-institution pair (h, i) can claim an empty

apartment a, i.e. there is no i, h and a such that:

i. aPhϕA(h),

6Since priorities are responsive, this means that, for all i ∈ I, either (a, h) �i ∅ for all (a, h) ∈ µ(i), or

µ(i) = ∅.
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ii. (a, h) ∈ Chi(µ(i) ∪ (a, h), qi), and

iii. θ(a) = ∅.

A household-institution pair (h, i) has justified envy over the household-institution pair (h′, i′)

at the individually rational assignment µ if i = τ(h), i′ = τ(h′) and there exists ϕA(h′) = a ∈ θ(i′),

such that

i. aPhϕA(h),

ii. (a, h) ∈ Chi(µ(i) ∪ (a, h), qi), and

iii. iπai
′.

We thus define deviations from pairs (h, i), where (h, i) claim an apartment a that improves

preferences of both household h and institution i and for which institution i has higher priority

than institution i′ which is currently assigned to apartment a. Notice that we require that the

new assignment obtained after the deviation satisfies the quota for the deviating institution. But

the assignment following the deviation may not satisfy the distributional constraints, when the

apartment a is initially assigned to an institution i′ different form i. If we consider only deviations

which do not require a change in assignment of apartments to institutions – and hence allows us

to compare assignments which both satisfy the distributional constraints – we obtain a weaker

form of envy, called justified envy over households of the same type:

There is justified envy over households of the same type when a pair (h, i) has justified

envy over a pair (h′, i).

We now define fair and efficient assignments:

An assignment µ is fair if it is individually rational, non-wasteful and there is no justified envy. A

matching µ is fair over households of the same type if it is individually rational, non-wasteful

and there is no justified envy for households of the same type.

An assignment µ is Pareto efficient if there is no matching µ′ such that all households prefer

µ′ to µ, with strict inequality for at least one household. An assignment µ′ Pareto dominates

another assignment µ if µ′(h)Rhµ(h) for each h ∈ H, and µ′(h′)Ph′µ(h′) for at least one h′ ∈ H.

Finally we consider the incentives of households to reveal their true preferences: A mechanism

Λ associates a profile of preference lists with an assignment µ. Let Rh be the true preference
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list of each household h. The set of all possible preference lists of household h is denoted by <h.

A profile of preference list is a vector R′ = (R′h1 , R
′
h2
, . . . , R′hH ) ∈ <h1 × <h2 × · · · × <hH = <.

As usual, R−h is the profile of all preference lists except Rh. We do not treat symmetrically

the revelation of preferences of households and institutions. We suppose that preferences of

institutions are known, as would be the case when institutions have preferences which depend on

fixed characteristics of households and apartments.

A mechanism Λ is strategy proof for households if telling the truth is a dominant strategy

for all households, i.e. Λ[Rh, R−h](h)RhΛ[R′h, R−h](h) for all R′h ∈ <h and R−h ∈ <−h.

3 The Nested Deferred Acceptance Mechanism

In this Section, we extend the Deferred Acceptance (DA) algorithm to our setting and introduce

the Nested Deferred Acceptance (NDA), which produces an assignment µ = (θ, ϕ) in the matching

market through institutions. The NDA will be used, as in Gale and Shapley (1962), to prove

existence of a fair matching in our model.

The idea behind the NDA is to compute simultaneously a many-to-one matching, θ, and a one-

to-one matching, ϕ, by nesting two deferred acceptance algorithms. In the main DA iteration

(the “outer loop”), each unassigned household asks for her most preferred apartment. Given

these demands, we run another DA (the “inner loop”) where each institution demands a pair of

apartments and households; then, the procedure continuous iteratively.

Formally, the NDA proceeds as follows:

Initialization

Consider a market (I,Q,H, τ, A, P,�, π). The assignment is initialized to be the empty assign-

ment, so µ0(i) = µ0(a) = µ0(h) = ∅, i.e. θ0(i) = θ0(a) = ϕ0(h) = ∅ for all i ∈ I, a ∈ A,

h ∈ H.

Let Ath = A and t := 1.

A. Eliciting the demand of households (the outer loop)

All unassigned households h ask for their most preferred apartment in Ath, denoted by Dt
h, while

matched households h′ iterate their demand to their match, i.e. Dt
h′ = {ϕt−1A (h′)}.

For all i ∈ I and a ∈ A, we define the set of households of type i that demand apartment a as
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follows:

H t
a,i = {h ∈ H | Dt

h = {a} and i = τ(h)}.

The set of pairs (a, h) that can be assigned to institution i is defined as

M t
i = {(a, h) ∈ A×H | (a, h) �i ∅ and h ∈ H t

a,i}.

B. Iteration over Mt
i to match the demands of institutions and apartments (the inner

loop)

Let θs(i) = ∅ for all i ∈ I, and M̃ s
i = M t

i , s := 1.

B.1 All institutions i demand the set of pairs Chi(M̃
s
i , qi). So, the set of institutions that demand

an apartment a is

Isa = {i ∈ I | there exists (a, h) ∈ Chi(M̃ s
i , qi)}.

B.2 For all apartments a such that Isa 6= ∅, apartment a is assigned to the institution with the

highest priority under πa, i.e. a ∈ θs(i) if and only if i = maxπa I
s
a.

For all institutions i, let M̃ s+1
i := M̃ s

i \ {(a, h) ∈ M̃ s
i | (a, h) ∈ Chi(M̃ s

i , qi) and a /∈ θs(i)}. That

is to say, we delete from the set M̃ s
i those pairs where the institution i is rejected.

If |θs(i)| = qi for all institutions i, or M̃ s+1
i = ∅ for all institutions i for which |θs(i)| < qi, go to

B.3; otherwise, let s = s+ 1 and go to B.1.

B.3 Rename θt(i) := θS(i), where S is the last iteration of B.1. Furthermore, each pair (a, i) is

tentatively assigned to household h if and only if a ∈ θt(i) and (a, h) ∈ Chi(M̃S
i , qi). That is to

say ϕt(h) = (a, i).

C. Iteration over Dt
h

For all unassigned households h, let At+1
h := Ath�{maxPh

Ath}. If each household has been

rejected by all the apartments in her preference list or is matched, the tentative assignment

becomes the output assignment. Otherwise, t := t+ 1, go to A.

The output of the previous mechanism depends on the market E = (H,A, P, I,�, πA, Q). So, it

is denoted by µNDA[E] = (θNDA[E], ϕNDA[E]), or simply µNDA = (θNDA, ϕNDA) whenever there

is no confusion. We use NDA[P ] to denote the NDA algorithm under the preference profile P .

Note that the NDA algorithm has a finite number of steps because each DA ends in finite time.
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3.1 An example of NDA

The following example shows how the NDA algorithm works, and the importance of Phase B

(the inner loop).

Example 3.1. Consider the market I = {1, 2}, H = {h1, h2, h3} and A = {a1, a2}. The vector

of quotas is Q = (1, 1), and the type function is defined by H(1) = {h1} and H(2) = {h2, h3}.

The profiles of institutions priorities, households preferences and apartments priorities is

�=


�1 �2

(a1, h1) (a1, h2)

(a2, h1) (a2, h3)

(a2, h2)

 , P =


Ph1 Ph2 Ph3

a1 a1 a2

a2 a2 a1

 and π =


πa1 πa2

1 2

2 1

 .

At step A.1, households announce their preferred apartment: households h1 and h2 announce

a1, and household a3 announces h2. The NDA then moves to step B1.1, which is the inner loop.

At this step, each institution announces its set of maximal matchings: 1 announces (a1, h1) and

2 announces {(a1, h2), (a2, h3)}. Observe that apartment a1 is demanded by both institutions, so

the algorithm moves to step B2.2. As institution 1 has priority over 2 for apartment a1, a1 rejects

2 and the assignment at the end of step B1.2 is (a1, h1), (a2, h3). The NDA moves back to the

outer loop and household h2 announces apartment a2 at step A.2. The algorithm moves now to

step B2.1 where institution 2 announces that it prefers (a2, h3) to (a2, h2), and hence assignment

(a1, h1), (a2, h3) is produced. This is the last step of the algorithm as household h2 has already

announced all the apartments.

Remark 1. In the absence of the inner loop, in previous example, household h3 is rejected

from 2 at the end of step A.1. Thus, assignment (a1, h1), (a2, h2) is produced at the end of A.2.

Consequently, in this assignment (h3, 2) has justified envy over (h2, 2). �

3.2 No distributional constraints

In this section we analyze the NDA algorithm when there are no distributional constraints –

quotas are ineffective (this situation arises when institutions’ quotas are large enough i.e. qi > A

for all i ∈ I).
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The implications for the NDA mechanism are presented below. We first show that in a market

without distributional constraints, the “inner loop” of the NDA algorithm (phase B) only requires

one step.

Lemma 3.1. Consider a matching market with institutions and no distributional constraints,

i.e. qi > #A for all i ∈ I. Then, phase B of the NDA algorithm is iterated only once.

Even more, when quotas are ineffective, all apartments tentatively assigned, at some step during

the algorithm, are also assigned in the final assignment.

Lemma 3.2. Consider a matching market with institutions and no distributional constraints,

i.e. qi > #A for all i ∈ I. If an apartment is assigned at some step t by some institution, this

apartment is assigned under the assignment µNDA.

The following theorem shows all the desirable properties that the NDA algorithm satisfies when

there are no distributional constraints.

Theorem 3.1. Consider a matching market with institutions (I,Q,H, τ, A, P,�, π) where qi >

#A for all i ∈ I.

1. The µNDA assignment is individually rational, non-wasteful and there is no justified envy;

namely, the assignment µNDA is fair.

2. There is no fair assignment that Pareto dominates µNDA.

3. The NDA mechanism is strategy-proof for households.

Theorem 3.1 shows that in the absence of distributional constraints, the model of matching

through institutions inherits the properties of classical school choice problems. Even though the

description of assignments is more complex in matching through institutions than in classical

school choice problems, the properties of the assignment rule does not differ significantly.

Remark 2. The NDA works as a two sided market without quotas when the offering side is

composed by households, and the accepting side by institutions and apartments: an apartment

a is tentatively matched to household h via institution i if h is the top tentative matching of a

for i, and i is the top institution through which an offer is emitted. If, in the final matching,
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institutions do not claim a fixed quota of assignments, the NDA’s inner loop finishes in one

step (see Lemma 3.1). In other words, institutions presence does not fundamentally change the

assignment mechanism.

4 Existence and fairness with distributional constraints

In this Section, we provide examples to show that assignments satisfying distributional constraints

and fairness may fail to exist. Distributional constraints require institutions to fill their quotas

independently of households preferences, Evidently, as the following example shows, this may

lead to inconsistencies.

Example 4.1. Let I = {1, 2}, A = {a1, a2, a3}, H = {h1, h2, h3, h4}, where households type

function is given by H(1) = {h1, h2, h3} and H(2) = {h4}. The vector of quotas is Q = (2, 1).

The profiles of institutions priorities and households preferences are

�=


�1 �2

(a1, h1) (a3, h4)

(a3, h2)

 , P =


Ph1 Ph2 Ph3 Ph4

a1 a1 a1 a1

a2 a3 a3 a2

a3 a2 a2 a3

 .

Notice that there is no assignment of apartment a2 which is acceptable by any institution. This

means that apartment a2 cannot be assigned in an individually rational assignment and quotas

cannot be fulfilled. �

Even when individually rational assignments satisfying distributional constraints exist, they may

not satisfy fairness due to the preferences of institutions. We illustrate this point in the following

example.

Example 4.2. Consider I = {1, 2}, H = {h1, h2, h3} and A = {a1, a2, a3}. The vector of quotas

is Q = (q1, q2) = (2, 1), and the type function is given by H(1) = {h1, h2} and H(2) = {h3}. The
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profiles of institutions priorities, households preference and apartments priorities are

�1 �2

(a2, h2) (a1, h3)

(a1, h1)

(a1, h2)

(a3, h1)


, P =


Ph1 Ph2 Ph3

a1 a1 a1

a2 a2 a3

a3 a3 a2

 , π =


πa1 πa2 πa3

1 1 1

2 2 2

 .

Note that (a1, h3) is the unique acceptable assignment of institution 2 and (a2, h1) is not accept-

able for institution 1. Therefore, in this market there exists one and only one assignment that

satisfies the distributional constraints, which is:

µ =


h1 h2 h3

a3 a2 a1

1 1 2

 .

Although µ satisfies the distributional constraints, note that i) a1Ph1a3, ii) (a1, h1) ∈ Ch1(µ(1)∪

(a1, h1), q1) because (a1, h1) �1 (a3, h1), and iii) 1πa12. Hence, the pair (1, h1) has justified envy

over the pair (2, h3) at the apartment a1. Consequently, the assignment µ is not fair. �

The previous examples build on the fact that distributional constraints may conflict with the

preferences of households and institutions. In Example 4.1, the fulfillment of quotas would imply

to assign an unacceptable apartment. In Example 4.2, the unique assignment which satisfies

distributional constraints is upset by a deviation which results in one of the two institutions not

fulfilling its quota.

The main difficulty highlighted by Example 4.2 is that institution 2 only views one apartment

as acceptable. Assuming that every apartment is acceptable to any household and institution

would clearly overcome this difficulty. We will provide a weaker requirement which guarantees

the existence of a fair assignments satisfying distributional constraints. Specifically, it is enough

to assume that for each institution and each apartment there exist a household who is willing to

accept the apartment, and such that the institution also accepts the assignment. This leads us

to define an over-demand condition, under which fair assignments satisfying the distributional

constraints will be shown to exist.

Assumption 1. For all institutions i and apartments a, there is an unassigned household h such

that (a, h) �i ∅, aPh∅ and iπa∅.
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Finally, we note that, perhaps surprisingly, the set of fair assignments does not have a lattice

structure in our model. Households may disagree on the best fair assignment satisfying distribu-

tional constraints, as shown in the following example:

Example 4.3. Consider a market such that H = {h1, h2}, A = {a1, a2} and I = {1, 2}, H(1) =

{h1}, H(2) = {h2}.. Institutions priorities, households preferences and apartments priorities are

given by.

�=


�1 �2

(a1, h1) (a2, h2)

(a2, h1) (a1, h2)

 , P =


Ph1 Ph2

a1 a1

a2 a2

 and π =


πa1 πa2

2 1

1 2

 .

In this market, we construct the following fair assignments where the distributional constraints

hold.

µ =


h1 h2

a1 a2

1 2

 and µ′ =


h2 h1

a1 a2

2 1

 .

We note that household h1 prefers µ′ to µ, whereas household h2 has the reverse preferences. �

5 Main Results

5.1 Interrupters

The presence of distributional constraints may prevent the NDA from producing fair outcomes.

During Phase B of the NDA algorithm, institutions make offers following the preferences of

households attached to them and they might temporarily fill their quotas. Later in the run of the

NDA, better options might arise for some institutions, leading them to drop some apartments.

In this case, institutions act as interrupters, as defined in Kesten (2010): they temporarily accept

pairs of households and apartments which will be dropped in the final outcome, preventing the

emergence of fair outcomes.

The following example shows that the NDA may produce an assignment which fails to satisfy

fairness over households of the same type.

Example 5.1. (There is justified envy over households of the same type). Let I =

{1, 2}, A = {a1, a2, a3} and H = {h1, h2, . . . , h7}, where households type function is given by
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H(1) = {h1, h2, h5, h6} and H(2) = {h3, h4, h7}. The vector of quotas is Q = (2, 1). The profiles

of institutions priorities and households preferences are

�=



�1 �2

(a1, h1) (a2, h3)

(a1, h2) (a2, h4)

(a2, h1) (a1, h3)

(a2, h2) (a1, h4)

(a1, h5) (a1, h7)

(a2, h6) (a2, h7)

(a3, h1)

(a3, h6)



, P =


Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7

a1 a2 a1 a1 a2 a1 a1

a2 a1 a2 a2 a1 a2 a2

a3 a3 a3 a3 a3 a3 a3

 .

The profile of apartment priorities is π =


πa1 πa2 πa3

2 2 1

1 1 2

 .

Running the NDA algorithm, the elicited demand of households, at step 1, is described in Table

1. Also, Table 2 shows the institutions that demand each apartment, where the apartment a1 is

demanded by both institutions.

I H1
a1,i

H1
a2,i

H1
a3,i

M1
i = M̃1

i

1 h1, h6 h2, h5 ∅ (a1, h1), (a2, h2)

2 h3, h4, h7 ∅ ∅ (a1, h3), (a1, h4), (a1, h7)

Table 1: A. Elicited Demand of Households at step 1.

Note that 2πa11, i.e., Phase B stops in one step. Consequently, the tentative assignment produced

at the end of step 1 is given in the last column of Table 3.

The algorithm continues to step 2, where Table 4 shows the demands of households at this step,

and Table 5 summarizes the institutions that demand each apartment. Note that institution 2

has a higher priority than institution 1 under priorities πa1 and πa2 . Moreover, we have that

q2 = 1 and (a2, h4) �i (a, h) for all (a, h) ∈ M2
2 . So, the tentative assignment produced at the

end of step 2 is µ2, which is shown in the last column of Table 6.

19



A I1a

a1 1, 2

a2 2

a3 ∅

Table 2: B. Institutions de-

mand at step 1.

I Ch1i (M̃
1
i , qi) µ1

1 (a1, h1), (a2, h2) (a2, h2)

2 (a1, h3) (a1, h3)

Table 3: B. Iteration over the sets M1
i at step 1.

I H2
a1,i

H2
a2,i

H2
a3,i

M2
i = M̃1

i

1 h5 h2, h6, h1 ∅ (a2, h1), (a2, h2)

2 h3 h4, h7 ∅ (a1, h3), (a2, h4), (a2, h7)

Table 4: A. Elicited Demand of Households step 2.

A I2a

a1 1, 2

a2 1, 2

a3 ∅

Table 5: B. Elicited demand

of institutions at step 2.

I Ch2i (M̃
1
i , qi) µ2

1 (a2, h1) ∅

2 (a2, h4) (a2, h4)

Table 6: B. Iteration over the sets M2
i at step 2.

It is important to note that the assignments (h3, a1, 2) and (h2, a2, 1) are disrupted at the end of

step 2 because 2πa11 and (a2, h4) �2 (a1, h3). Households h2 and h3 were rejected from apartments

a2 and a1, respectively.

The algorithm continues to step 3 because not all households have been rejected by all their

acceptable apartments. For example households h2 and h3 have not been rejected from the

apartments a1 and a2, respectively. The demand of households at step 3 is shown in Table 7.

I H3
a1,i

H3
a2,i

H3
a3,i

M3
i = M̃1

i

1 h2 ∅ h1, h5, h6 (a1, h2), (a3, h1), (a3, h6)

2 ∅ h3, h4 h7 (a2, h3), (a2, h4), (a3, h7)

Table 7: A. Elicited Demand of Households step 3.
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By Table 7, we note that each apartment is demanded by a different institution. So, the tentative

assignment produced at the end of step 3 is shown in the last column of Table 8.

I Ch3i (M̃
1
i , qi) µ3

1 (a1, h2), (a3, h1) (a1, h2), (a3, h1)

2 (a2, h3) (a2, h3)

Table 8: B. Iteration over the sets M3
i at step 3.

At the end of step 3, we note that h5, h6 and h7 have been rejected from all their acceptable

apartments. However, h4 is rejected by a2, and her last acceptable apartment is a3. Thus, the

algorithm continues to step 4, where h4 demands the apartment a3, and households h1, h2, h3

iterate their demand to their match. Consequently, institutions 1 and 2 demand the apartment

a3 due to (a3, h1) �1 ∅ and (a3, h4) � ∅. However, we know that institution 1 has a higher

priority than institution 2 under the priority πa3 , which implies that household h4 is rejected

from the apartment a3 because τ(4) = 2.

Therefore, the NDA algorithm stops at the end of step 4, and produces the assignment

µNDA =


h1 h2 h3 h4 h5 h6 h7

a3 a1 a2 ∅ ∅ ∅ ∅

1 1 2 ∅ ∅ ∅ ∅

 .

We now observe that this assignment does not satisfy fairness over households of the same type.

Consider institution 1, households h1 and h2, we know that a1Ph1a3 and (a1, h1) �1 (a1, h2),

where ϕNDAI (h1) = ϕNDAI (h2) = 1, ϕNDAA (h2) = a1 and ϕNDAA (h1) = a3. The pair (h1, 1) has

justified envy over (h2, 1) at apartment a1.

We also note that the sets {(a1, h5), (a2, h6), (a3, h3)} and {(a1, h4), (a2, h4), (a1, h7), (a2, h7)} are

sets of unassigned pairs that are acceptable for institutions 1 and 2, respectively. �

Example 5.1 illustrates how an interruption works. Observe that institution 2 is tentatively

assigned to a1 at step 1. Thus, household h1 and institution 1 are displaced from a1 at the end of

step 1. Similarly, household h3 and institution 2 are displaced from apartment a1 at step 2 (see

Table 4.) However, apartment a1 is assigned to institution 1 at step 3. But household h1 can

no longer demand this apartment because she was rejected from it at step 1. As a consequence,
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the choice function of institution 1 does not consider the pair (a1, h1), which implies the presence

of justified envy between the pairs (h1, 1) and (h2, 1). Following Kesten (2010)’s terminology,

we say that institution 2 is an interrupter for apartment a1. We formally define an interrupter

below.

Given a matching problem to which the NDA is applied, we say that an institution i is an

interrupter for apartment a if there exists

1. steps t to t + n such that a ∈ θt
′
(i) for all t′ ∈ {t, t + 1, . . . , t + n} but a /∈ θt

′
(i) for all

t′ > t+ n, and

2. an institution j 6= i and a household h such that (a, h) ∈ Chj(M t′
j , qj) but (a, h) /∈ µt′(j)

for some t′ ∈ {t, t+ 1, . . . , t+ n}.

5.2 Nested Deferred Acceptance with Interrupters

Following the Efficiency Adjusted Deferred Acceptance Mechanism (Kesten, 2010), we modify

the NDA introducing a second stage where we search for all interrupter institutions. Then we

let these institutions delete from their preference the pairs containing the apartment where they

cause the interruption. We define the following delete operation on priorities �i .

Let = be the set of all possible priorities �i, for all i ∈ I. The delete operation over = is

the function \ : = × (A × H) → = such that \(�, a), or simply � \a, is the preference that

declares all pairs (a, h) �i ∅ as unacceptable for i. In other words, the preference � \a drops

all acceptable pairs (a, h) from �i and holds the original order in the preference �i. Note that

Kesten (2010) defines this operation over students’ preferences (the equivalent in our model of

households in the outer loop), because he identifies that students causes the loss of efficiency

during the Deferred Acceptance algorithm. In our case, the delete operation targets institutions,

which are involved in the inner loop of the algorithm, as they are the source of the interruption

of the NDA algorithm.

We finally formally present the Nested Deferred Acceptance with Interrupters (NDAI). Each step

of this mechanism has two stages: the NDA algorithm runs in the first stage, while the second

stage deletes pairs from the priorities of interrupters. The NDAI proceeds as follows.

Initialization

Initialize the counter of iterations over interrupter institutions at x := 0.
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Step 0. This step is divided in the following stages:

Stage 0.1 NDA Phase. Let �0= (�i,0)i∈I = (�i)i∈I . Run the NDA algorithm using the

profile of priorities and preferences (�0, P ).

Stage 0.2 Deletion in Priorities If there is no interrupter, the algorithm stops. Otherwise,

find the last step of the NDA phase at which an interrupter is rejected from the apartment

for which it is an interrupter. For each interrupter institution i, �i,1=�i,0 �a; �j,1=�j,0 if

j is not an interrupter.

Step x. The stages are the following.

Stage x.1 NDA Phase. Run the NDA algorithm with the profile of priorities and preferences

(�x, P ).

Stage x.2 Deletion in Priorities. If there is no interrupter, the algorithm stops. Otherwise,

find the last step of the NDA phase at which an interrupter is rejected from the apart-

ment for which it is an interrupter. For each interrupter institution i, �ix+1=�i,x �a;

�j,(x+1)=�j,x if j is not an interrupter.

The output of the previous mechanism is denoted by µNDAI . The NDAI is solvable in finite

time because each NDA phase is solvable in a finite number of steps, and there are at most |I|

interrupters. Even more, NDAI is different from Kestens’ EADAM because households ask for

the same apartments at each NDAI iteration. The following example shows how the NDAI works.

Example 5.2. We consider the same market as in the Example 5.1 and consider stage 0.1 of

the NDAI algorithm. We observe that institution 2 causes an interruption over the pair (a1, h1).

Consequently, we delete all the pairs (a1, h) from the priority �2 at Stage 0.2. We get

�1,1=�1 and �2,1=


(a2, h3)

(a2, h4)

(a2, h7)

 .
Consider stage 1.1. We run the NDA algorithm with priorities�1. Step 1.1 of this NDA algorithm

is summarized in Table 9. Given that q1 = 2, and 1πa12, the tentative assignment is

µ1 =


h1 h2 h3 h4 h5 h6 h7

a1 a2 ∅ ∅ ∅ ∅ ∅

1 1 ∅ ∅ ∅ ∅ ∅

 .
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I H i1
a1

H i1
a2

H i1
a3

1 h1, h6 h2, h5 ∅

2 h3, h4, h7 ∅ ∅

Table 9: A. Elicited Demand Of Households step 1, Stage 1.1

The NDA in Stage 1.1 moves to step 2. Phase A of the algorithm is illustrated in the Table 10.

Following the institutions priorities and the fact that 2πa31, the tentative assignment produced

at the end of step 2 is

µ2 =


h1 h2 h3 h4 h5 h6 h7

a1 ∅ a2 ∅ ∅ ∅ ∅

1 ∅ 2 ∅ ∅ ∅ ∅

 .

I H2
a1,i

H2
a2,i

H2
a3,i

1 h1, h5 h2, h6 ∅

2 ∅ h3, h4, h7 ∅

Table 10: A. Elicited Demand Of Households step 2

Now, the NDA algorithm of Stage 1.1 moves to step 3. We show the demands of households in

Table 11. Since the institution 1 has a higher priority than institution 2 under πa3 , we get the

tentative assignment µ3.

µ3 =


h1 h2 h3 h4 h5 h6 h7

a1 ∅ a2 ∅ a3 ∅ ∅

1 ∅ 2 ∅ 1 ∅ ∅

 .

I H3
a1,i

H3
a2,i

H3
a3,i

1 h1, h2 ∅ h5, h6

2 ∅ h3 h4, h7

Table 11: A. Elicited Demand Of Households step 3
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I H4
a1,i

H4
a2,i

H4
a3,i

1 h1 ∅ h2, h6

2 ∅ h3 ∅

Table 12: A. Elicited Demand Of Households step 4

Note that household h2 has no been rejected by the apartment a3, her last acceptable apartment.

The NDA at Stage 1.1 moves to step 4 where Table 12 shows Phase A.

We observe that all households have been accepted or rejected at the end of the step 4, and hence

Stage 1.1 stops. There are no interrupters because no apartment is rejected by any institution.

Therefore, the NDAI algorithm stops and produces the following assignment.

µNDAI = µ4 =


h1 h2 h3 h4 h5 h6 h7

a1 a3 a2 ∅ ∅ ∅ ∅

1 1 2 ∅ ∅ ∅ ∅

 .

This assignment satisfies fairness over households of the same type. �

Remark 3. NDAI AND EADAM are different. It is important to recall that institutions

interrupter do not work in the same way that students interrupters in the EADAM. Previous

example illustrates this fact; although institution 2 removes all acceptable pairs from its pref-

erences, household h1 still makes an offer to a1 at iteration 1.1, and finally she gets it. On the

contrary, following the EADAM we observe that h1 gives up to get apartment a1 because this

apartment is deleted from her preferences, and consequently, h1 makes an offer to a2, her second

best apartment, during iteration 1.1.

The next Theorem shows that the matching produced by the NDAI algorithm satisfies desirable

properties.

Theorem 5.1. Consider a matching market with institutions E = (I,H, τ,D,Q,A, δ, P,�, π).

1. The µNDAI is individually rational, non-wasteful, respects distributional constraints and

there is no justified envy; namely, the assignment µNDAI is fair.

2. There is no assignment which is fair that Pareto dominates µNDAI .
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3. The NDAI is strategy-proof for households.

Theorem 5.1 extends the classical properties of the deferred acceptance algorithm to the model of

matching through institutions. The proof, given in the Appendix, is an adaptation to our model of

classical proofs of fairness and strategy-proofness of the Deferred Acceptance algorithm. Theorem

5.1 provides a strong rationale for the use of this mechanism to assign agents to apartments when

institutions face distributional constraints.

5.3 Multiple institutions

In this subsection we generalize our previous results by allowing households to be attached to

multiple institutions, as is the case for applications to social housing in Paris. We now assume

that the type assignment mapping τ is a correspondence rather than a function: τ : H → 2I , i.e

τ(h) ⊆ I and Hi = {h ∈ H | i ∈ τ(h)}. We first note that fairness is too demanding and must

be weakened when agents can belong to multiple institutions. The following example, inspired

by Biró and McDermind (2010), illustrates why fairness may fail.

Example 5.3. (No fair assignments with multiple types). Consider H = {h1, h2}, I =

{1, 2} and A = {a1, a2}. Households preferences, institutions priorities and apartments priorities

are

P =


Ph1 Ph2

a1 a1

a2

 , �=


�1 �2

(h1, a1) (h1, a2)

(h2, a1)

 and π =


πa1 πa2

1 2

2

 .

The type function is defined as H(1) = {h1, h2} = H(2). Note that the unique assignment that

satisfies distributional constraints is

µ =


h1 h2

a2 a1

2 1

 .

Note that a1Ph1a2, (h1, a1) �1 (h2, a1) and 1πa12. In other words, (h1, 1) has justified envy over

(h2, 2) at apartment a1.

Notice that the over-demand condition is satisfied in Example 5.3. Hence the inexistence of

assignment satisfying fairness and distributional constraints comes from another source, here the
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fact that household h1 belongs to the list of the two institutions which have different preferences

over the apartment matched to household h1. In order to preclude this phenomenon, we do not

allow for envy involving households attached to two different institutions and consider the weaker

requirement of fairness over households of the same type. We can then adapt Theorem 5.1 to

show that the NDAI still satisfies desirable properties.

Theorem 5.2. Consider a matching market with institutions E = (I,H, τ,D,Q,A, δ, P,�, π)

where each institution is over demanded and households can belong to many institutions.

1. The µNDAI is individually rational, non-wasteful, respects distributional constraints and

there is no justified envy over households of the same type; namely, the assignment µNDAI

is fair over households of the same type.

2. There is no fair over households of the same type assignment that Pareto dominates µNDAI .

3. The NDAI is strategy-proof for households.

6 Distributional constraints and regional preferences

In this section we show how the Nested Deferred Acceptance algorithm can be applied to the

markets with distributional constraints and regional preferences introduced by Kamada and Ko-

jima (2015b). This model is inspired by the assignment of doctors to hospitals in Japan. Instead

of considering a simple many-to-one matching between hospitals and residents, Kamada and

Kojima (2015b) note that there exists some flexibility in the way hospitals fill their quotas of

positions, and introduce “regional preferences” over the pairs of hospitals and doctors. Mar-

kets with distributional constraints and regional preferences share some common features with

matching markets through institutions. Since doctors are interested in hospitals, hospitals about

doctors and regions care about the number of doctors that each hospital can accept, we note that

doctors, regions and hospitals play a similar role as households, institutions and apartments in a

market with institutions.

There are two main differences between Kamada and Kojima (2015b) and our model of matching

through institutions. First, hospitals have priorities over doctors in Kamada and Kojima (2015b)

whereas objects have priorities over institutions in our model. Second, and more importantly,
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regional preferences in Kamada and Kojima (2015b) are defined over the distribution of doctors

over hospitals as measured by a vector of capacities whereas we suppose that institutions care

about the precise assignment of households to objects. Notwithstanding those differences, we

show that the NDAI algorithm can usefully be applied to produce stable assignments in markets

with distributional constraints and regional preferences.

We now define the markets with distributional constraints and regional preferences of Kamada

and Kojima (2015b). A market with distributional constraints and regional preferences Ẽ =

(D,H,Q,R, τ, P,�,%, Q̃) is defined by:

1. D = {d1, d2, . . . , dD} is a finite set of doctors, a generic doctor is denoted by d;

2. H = {h1, h2, . . . , hH} is a finite set of hospitals, a generic hospital is denoted by h;

3. Q = (qh1 , qh2 , . . . , qhH ) is a vectors of quotas, where qh is the quota of the hospital h, a

generic quota is q;

4. R = {1, 2, . . . , R} is a finite set of regions, a generic region is r;

5. τ : H → R is the region function, i.e. if a hospital h belongs to the region r, we write that

τ(h) = r. Let Hr be the set of hospitals in region r, note that Hr ∩ Hr′ = ∅ for region

r′ 6= r;

6. P = (Pd1 , Pd2 , . . . , PdD) is the vector of doctors’ preferences, Pd is the strict preference of

household h ∈ H over H ∪ ∅; hPdh
′ means that doctor d prefers h to h′, a hospital h is

acceptable for doctor d if hPh∅.

7. �= (�h1 ,�h2 , . . . ,�hH ) is the profile of hospitals priorities over the set of doctors D. We

assume that for each h ∈ H the preference �h is responsive on 2D, i.e. for any d, d′ ∈ D

and S ∈ 2D we have that

i. S ∪ {d} �h S ∪ {d′} if and only if d �h d′, and

ii. S ∪ {d} �h S if and only if d �h ∅;

8. %r is the regional preference of r over the set of vectors Wr = {w = (wh)h∈H |wh ∈ Z+},

where wh specifies the number of doctors allocated to each hospital h in region r;

28



9. There exists a vector of regional caps Q̃ = (qr)r∈R, where qr is a non-negative integer for

each region r.

Kamada and Kojima (2015b) introduce quasi-choice rules which pick the preferred capacity

vector given the regional cap. Given %r, a function C̃hr : Wr×Z+ → Wr is an associated quasi

choice rule if C̃hr(Wr, qr) ∈ argmax�r{w ∈ Wr|#w ≤ qr} for any non-negative w = (wh)h∈Hr .

They also require that the quasi choice rule C̃hr be consistent, that is, C̃hr(ω) ≤ ω′ ≤ ω ⇒

C̃hr(ω
′) = C̃hr(ω). In other words, if C̃hr is still available when the capacity vector reduces

to ω′ ≤ ω, then the associated quasi-choice rule chooses C̃hr(ω
′). They also assume that the

regional preferences �r satisfy the following regularity conditions:

(1) ω′ �r ω if ωh > qh ≥ ω′h for some h ∈ Hr and ω′h′ = ωh′ for all h′ 6= h. In words, no hospital

wants more doctor than its real capacity. This implies that [C̃hr(w)]h ≤ qh for each h ∈ Hr.

(2) ω′ �r ω if
∑

h∈Hr
ωh > qr ≥

∑
h∈Hr

ω′h. So, each region prefers the total number of doctors

in the region to be at most its regional cap.

(3) If ω′ � ω ≤ qHr := (qh)h∈Hr and
∑

h∈Hr
ωh ≤ qr, then ω �r ω′. In other words, each region

prefers to fill as many positions of hospitals in the region while the regional cap would not

be violated.

Regional preferences %r are said to be substitutable if there exists an associated quasi choice

rule C̃hr that satisfies w ≤ w′ ⇒ C̃hr(w) ≥ C̃hr(w
′) ∧ w.

Next, Kamada and Kojima (2015b) define stable matchings in markets with distributional con-

straints and regional preferences:

A matching µ is a function that satisfies

(i) µ(d) ∈ H ∪ {∅} for all d ∈ D,

(ii) µ(h) ⊆ D for all h ∈ H and

(iii) for any d ∈ D and h ∈ H, µ(d) = h if and only if d ∈ µ(h).

A matching is feasible if µ(r) ≤ qr for all r ∈ R, where µr =
⋃

h∈Hr

µ(h).

A matching µ is stable if it is feasible, individually rational, and if (d, h) is a blocking pair, then
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(i) |µ(h)| = qrh ,

(ii) d′ �h d for all doctors d′ ∈ µ(h), and

(iii) either µ(d) /∈ Hr(h) or w %r(h) w′,

where wh′ = |µ(h′)| for all h′ ∈ Hr(h) and w′h = wh + 1, w′µ(d) = wµ(d) − 1 and w′h′ = wh′ for all

other h′ ∈ Hr(h).

We adapt the NDA algorithm to the model of Kamada and Kojima (2015b). The algorithm

differs from the NDA algorithm of our baseline model in two respects: (i) unmatched doctors

are selected sequentially rather than simultaneously to make offers and (ii) we replace the choice

function of regions by the quasi-choice function of regions. Formally:

Initialization

Consider a market (D,H,Q,R, τ, P,�,%, Q̃) with distributional constraints and regional prefer-

ences. The matching is initialized to be the empty matching, so µ0(h) = µ0(d) = µ0(r) = ∅, for

all d ∈ D, h ∈ H and r ∈ R.

For all doctors d ∈ D, let H t
d := H, and t = 1. For each region r, fix a quasi-choice rule C̃hr.

A. Eliciting the demand of doctors

Arbitrarily pick one unassigned doctor d, who asks for the most preferred hospital in H t
d, denoted

by Dt
d while r is the region of Dt

d; moreover matched doctors d′ in region r iterate their demand

to their match, Dt
d′ = {µt−1(d)}.

For all hospitals h ∈ H in region r, we define the set of doctors that demand hospital h in region

r as follows:

Dt
h,r = {d ∈ D|Dt

d = {h}, d �h ∅ and τ(h) = r}.

The set of pairs (d, h) that can be assigned to region r is defined as

M t
r = {(d, h) ∈ D ×H|d �h ∅ and d ∈ Dt

h,r}.

The possible assignments are

P tr =
{
p = {(d, h)}τ(h)=r | (d, h) ∈M t

r and d is not matched twice
}
.

The number of doctors matched to hospital h at p is wh(p) = #{d ∈ D | (d, h) ∈ p}, thus, the

set of capacity vectors is

W t
r =

{
w = (wh)h∈H |∃ p ∈ P tr and wh = wh(p) for all h in region r

}
.
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B. Matching the demand of region r and hospitals of the region.

B.1 Regions r demands the vector

ωtr = (ωth)τ(h)=r = C̃hr(W
t
r , qr).

B.2 Each hospital h in region r is tentatively assigned to the preferred subset of Dt
h,r with

cardinality wth. The assignment in other regions remains the same.

C. Iteration over Dt
d

Let H t+1
d := H t

d \ {maxPd
H t
d}, t := t+ 1.

If all doctors have been rejected by all the apartments in her preference list or is matched, the

tentative assignment becomes the outcome assignment. Otherwise, go to the Phase A.

The assignment produced by the previous algorithm is denoted by µ̃NDA. It depends on a market

Ẽ and a fixed associated quasi choice rule C̃h. We now state that the NDA produces a stable and

strategy-proof matching in the market with distributional constraints and regional preferences:

Theorem 6.1. Suppose that regional preferences �r are substitutable for all r ∈ R. Then the

matching produced by the nested deferred acceptance algorithm is stable and strategy proof for

doctors.

Proof. See Online Appendix.

Remark 4. It is important to note that Kamada and Kojima establish a relation between

distributional constraints and contracts. Thus, they derive their results using the Cumulative

Offer Process which considers contracts between hospitals and doctors, while regions determine

the number of doctors attached to each hospital. In the matching through institutions model,

although it is possible to define contracts considering triads (a, h, i), apartments do not determine

the number of households attached to each institution. Even more, since there are no property

rights, contract (a, h, i) summarizes two contracts, one between apartments and institutions, and

other between institutions and households. Consequently, when households, apartments and

priorities take care of the others, and not only in the number of contract accepted, it is necessary

to modify the COP to show the interaction within them.
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7 Concluding Remarks

We model a matching market with institutions as a three-sided market. Institutions own objects

and have agents attached to them. Agents have preferences over objects. Objects have priorities

over institutions. We show that fair assignments satisfying distributional constraints may fail to

exist, and propose a sufficient condition – the over-demand condition – under which we prove

existence. Existence derives from the construction of a new algorithm, the the Nested Deferred

Acceptance (NDA) algorithm, which combines a one-to-one matching between agents and objects

and a one-to-many matching between objects and institutions. If interrupters are eliminated from

the preference list, as in Kesten (2010), the NDA algorithm produces an assignment which is fair,

Pareto optimal among fair assignments and strategy-proof for agents.

The model of matching through institutions we consider is inspired by the assignment of social

housing in Paris but the procedure we propose applies more generally to situations where agents

belong to different groups, and pool their resources to obtain more flexible outcomes. We hope

to study more applications – like the exchange of students across universities or of pupils across

school districts in detail in future work.

References
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A Pairwise stability

Definition 1. Contracts are bilateral substitutes for hospital h if for any set of contracts Y ⊂

X and any pair of contracts x, z ∈ X −Y , such that z /∈ Chh(Y ∪{z}) and z ∈ Chh(Y ∪{x, z}),

then z ∈ YD or xD ∈ YD.

Definition 2. Contracts are unilateral substitutes for hospital h if for all z ∈ X − Y , z /∈

Chh(Y ∪ {z}) and z ∈ Chh(Y ∪ {x, z}) then z ∈ YD.

Definition 3. Contracts satisfy the irrelevance of rejected contracts for hospital h if for any

set of contracts Y ⊂ X and any pair of contracts x, z ∈ X − Y , such that z /∈ Chh(Y ∪ {z}),

then Chh(Y ) = Chh(Y ∪ {z}).
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Definition 4. Contracts satisfy the law of aggregate demand for hospital h if, for all X ′, X ′′ ⊆

X, we have that

X ′ ⊂ X ′′ → |Chh(X ′)| ≤ |Chh(X ′′)|.

The following example, based on the Example 1 of (Hatfield and Kojima, 2010), satisfies previous

conditions.

Example A.1. Consider a problem with H = {h1, h2, h3} and D = {d1, d2, d3}. Doctors prefer-

ences over contracts are

PD =


Pd1 Pd2 Pd3

(h1, 1/2) (h2, 1/2) (h3, 1/2)

(h2, 1/2) (h3, 1/2) (h1, 1/2)

 .

Hospitals preferences over contracts are

�H=



�h1 �h2 �h3
(d1, 1/2)(d2, 1/2) (d1, 1/2)(d2, 1/2) (d1, 1/2)(d3, 1/2)

(d1, 1) (d2, 1) (d3, 1)

(d2, 1) (d3, 1) (d1, 1)

(d3, 1/2) (d1, 1/2) (d2, 1/2)


.

Note that each hospital prefers two half-time doctors to one full-time doctor. Thus, the Cu-

mulative Offer Process outputs an assignment that is blocked by the set {h2, d1, d2}. In other

words, d2 prefers half-time in h2 to half time in h3, i.e. d2 is better off with h2. Also, hospital h2

prefers two half-time contracts with d1 and d2, to a half-time contract with h1. That is to say,

this assignment is not core stable.

In general, following the previous reasoning, there is no core stable assignments in this example.

B Proofs

Proof of Lemma 3.1:

Consider a step t of the NDA algorithm. We know that phase B starts with the set of acceptable

apartment-households pairs M̃1
i = M t

i for all institutions i. This implies that each institution i

demands the set Chi(M̃
t
i , qi), a set where apartments and households are not paired twice.
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Let Ati = {a ∈ A|(a, h) ∈ M t
i } be the set of apartments demanded by some household of type i

at step t. Since |Ati| ≤ A, there are no distributional constraints and priorities are responsive, for

all apartments a all top acceptable pairs (a, h) belong to the set Chi(M̃
1
i , qi). Each institution i

demands all the apartments in the set Ati. So, all the apartments in
⋃
i∈I A

t
i belong to θ1(j), for

some j ∈ I, at the end of Phase B.2.

Consequently

M̃2
i = M̃1

i \ {(a, h) ∈ M̃1
i |a ∈ θ1(j) for some j 6= i} = M̃1

i \ M̃1
i = ∅

for all institution i. Therefore, phase B stops in one iteration.

Proof of Lemma 3.2: Consider an apartment a that is assigned by some institution i at some

step t, i.e. a belongs to θt(i). Since households iterate their demand to their match, we have that

i ∈ I t+1
a . In other words, this apartment is demanded by some institution at step t + 1. Since

there are no distributional constraints and priorities are responsive, the apartment a is assigned

to some institution at the end of step t + 1 (the institution in I t+1
a with the highest priority at

πa). Iterating this argument, we conclude that the apartment a is assigned to some institution

at all steps t′ ≥ t.

Therefore µNDA(a) 6= ∅ because the NDA algorithm stops in a finite number of steps.

Proof of Theorem 3.1:

Individual Rationality. For all institutions i ∈ I, we know that µNDA(i) ⊆ Chi(M
T
i , qi),

where T is the last iteration of the NDA algorithm. Thus, (a, h) �i ∅ for all (a, h) ∈ µNDA(i).

Therefore, µNDA(i) � ∅ for all i ∈ I.

Moreover, the NDA algorithm stops when every unmatched household has been rejected by

all her acceptable apartments, in this case ϕ(h) = ∅, or every household is matched to some

acceptable apartment, i.e. ϕA(h)Ph∅ for all h ∈ H.

Non-wastefulness. We proceed by contradiction. We assume the existence of a household-

institution pair (h, i) that claims an empty apartment a. That is to say, we have that i) aPhϕA(h),

ii) (a, h) ∈ Chi(µNDA(i) ∪ (a, h), qi), and iii) θNDA(a) = ∅.

The condition i) means that household h demands the apartment a at some step t of the NDA

algorithm. Moreover, condition ii) guarantees that the pair (a, h) is acceptable for the institution

i. Thus, institution i demands the apartment a at step t. Applying Lemma 3.2, there exists some

institution j such that a ∈ θNDA(j) which contradicts the condition iii).
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There is no justified envy. Suppose, on the contrary, the existence of a pair (h, i) that has

justified envy over a pair (h′, i′), where τ(h) = i and τ(h′) = i′. Then, there exists an apartment

a such that ϕNDAA (h′) = a, a ∈ θ(i′), and

i. aPhϕ
NDA
A (h),

ii. (a, h) ∈ Chi(µNDA(i) ∪ (a, h), qi),

iii. iπai
′.

By condition i), household h demands the apartment a at some step t. Moreover, condition ii)

ensures that the pair (a, h) is acceptable for the institution i, i.e. (a, h) ∈M t
i . Consequently, we

have that i ∈ I ta. We analyze the following cases.

Case 1. i = i′, i.e. τ(h) = τ(h′) = i. Since ϕNDAA (h′) = a, household h′ demands the apartment

a at some step t′. Even more, (a, h′) ∈ Chi(M t′
i , qi) because (a, h′) belongs to the set µNDA(i).

Given that (a, h) ∈M t
i but ϕNDAA (h) 6= a, the responsiveness of priorities ensure that

(a, h′) �i (a, h). (1)

Moreover, since no apartment can be paired twice, condition ii) implies that

(a, h) �i (a, h′),

in contradiction with (1).

Case 2. i 6= i′, i.e. τ(h) 6= τ(h′). We know that a ∈ θNDA(i′), which implies the existence of

some step t′ where

i′πaj for all j ∈ I ta, for all t ≥ t′,

according to Phase B.3. In particular

i′πai,

in contradiction with condition iii).

In all cases we get a contradiction, therefore there is no justified envy at the assignment µNDA.

So, this assignment is fair.

Pareto undominated. We proceed as in Gale and Shapley (1962). To prove that µNDA is

Pareto undominated, we show that in any other fair assignment, each household gets the same

apartment or an apartment less preferred than ϕNDA(h).
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An apartment a is said to be achievable for a household h if there exists a fair assignment

µ = (θµ, ϕµ) such that ϕµA(h) = a. We proceed by induction to show that no household is

rejected by an achievable apartment during the NDA algorithm.

Hypothesis of induction. At step t we assume that no household has been rejected by an achievable

apartment. In other words, if a household is rejected by some apartment, this apartment is not

achievable for her.

Induction step. Consider that some household h∗ is rejected at step t + 1 from an apartment

a. We assume, on the contrary, that a is achievable for household h∗. Thus, there exists a fair

assignment µ = (θµ, ϕµ) such that ϕµ(h∗) = (a, i∗). So, the pair (a, h∗) is acceptable for the

institution i∗.

Now, let h be the household assigned to the apartment a at the end of step t + 1, this means

that ϕt+1(h) = (a, i) where i = τ(h). We analyze the following cases.

Case 1. i = i∗. Since ϕt+1(h) = (a, i), the apartment a belongs to θt+1(i). That is to say

(a, h) �i (a, h∗) (2)

because (a, h∗) /∈ µt+1(i). Since priorities are responsive, we have that

(a, h) ∈ Chi(µ(i) ∪ (a, h)).

Note that h prefers a to all the apartments that have not rejected her, then the induction

hypothesis ensures that household h prefers a to any other achievable apartment for her:

aPhϕ
µ
A(h).

Moreover, (a, h∗) ∈ µ(i). That is to say, the pair (h, i) has justified envy over the pair (h∗, i) at

the apartment a in the assignment µ, which contradicts the fact that µ is a fair assignment.

Case 2. i 6= i∗. We know that ϕµ(h∗) = (a, i∗), i.e. the pair (a, h∗) is acceptable for the

institution i∗, so i∗ ∈ I t+1
a . Moreover, i ∈ I t+1

a because ϕt+1(h) = (a, i). Given that a ∈ θt+1(i),

we conclude that a /∈ θt+1(i∗) because i = maxπa I
t+1
a ; thus

iπai
∗. (3)

By the induction hypothesis, we know that household h strictly prefers a to any other achievable

apartment for her, i.e.

aPhϕ
µ
A(h). (4)
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Now, we know that (a, h) ∈ µt+1(i), this means that the pair (a, h) is acceptable for institution

i. Moreover, (a, h∗) ∈ θµ(i∗), thus a is not assigned to i at µ. Also, there are no distributional

constraints and institutions priorities are responsive, then

(a, h) ∈ Chi(µ(i) ∪ (a, h), qi). (5)

By 3, 4 and 5, the pair (h, i) has justified envy over the pair (h∗, i∗) at the apartment a in the

assignment µ, which contradicts the fact that µ is fair.

In any case, a contradiction arises when we assume that household h∗ is rejected by some achiev-

able apartment a. So, no household is rejected by an achievable apartment. Therefore, µNDA is

Pareto undominated by fair assignments.

Truth-telling is a dominant strategy for households. We construct the proof as in Roth

(1982).

For each household h, we say that P ′h is a successful misrepresentation of Ph if P ′h is a preference

list such that

ϕNDAA [P ′h, P−h](h)PhϕA[P ](h).

Let a′ := ϕNDAA [P ′h, P−h](h), we define the preference list P ′′h where the apartment a′ is declared

as the most preferred apartment of h. Let P ′ and P ′′ be the preference profiles where household

h reports P ′h and P ′′h , respectively, and other households do not change their true preferences.

The following lemma establishes that P ′h and P ′′h are equivalents in the sense that

ϕNDAA [P ′h, P−h](h) = ϕNDAA [P ′′h , P−h](h).

Lemma B.1. Consider a matching market through institutions with no distributional constraints.

Then ϕNDAA [P ′h, P−h](h) = ϕNDAA [P ′′h , P−h](h).

Proof. By paragraphs above, the assignment µNDA[P ′] is fair with respect to P ′. Let i := τ(h),

it is no possible at ϕNDAA [P ′h, Ph] that (h, i) has justified envy over other pairs under P ′′ because

no apartment is preferred to a′ under P ′′h . Since other preferences did not change between P ′ and

P ′′, it implies 1. µNDA[P ′] is fair with respect to the profile P ′′, i.e. a′ is achievable for h under

the preference profile P ′′; 2. the apartment a′ is the best acceptable achievable apartment of h

under P ′′, and since µNDA[P ′′] is Pareto undominated by other fair assignments, we conclude

that

µNDA[P ′](h) = µNDA[P ′′](h).
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The following Lemma establishes that households are not worse off when a household successfully

misrepresents her true preference list.

Lemma B.2. Consider P ′h a preference list different from the true preference list of h. If

ϕNDAA [P ′](h) is weakly preferred to ϕNDAA [P ](h), then for each household h′ 6= h, either

ϕNDAA [P ′](h′)Ph′ϕ
NDA
A [P ](h′) or ϕNDAA [P ′](h′) = ϕNDAA [P ](h′).

Proof. We proceed by contradiction, i.e. we assume that aPh′a
′ for some h′ ∈ H, where

ϕNDAA [P ′](h′) = a′ and ϕNDAA [P ](h′) = a for h′ 6= h.

So, there exists a step t of NDA[P ′] at which h′ is rejected from a. Hence, by Lemma 3.2, the

apartment a is assigned to some household h′′. We analyze the following cases.

Case 1. If τ(h′′) = τ(h′) = i. Since µNDA[P ′] is fair, we have that (a, h′′) �i (a, h′). Let

a′′ := ϕNDAA [P ](h′′), we have the following sub-cases.

Case 1.1 aPh′′a
′′. Then (h′′, i) has justified envy over (h, i) at apartment a in the assignment

µNDA[P ], a contradiction.

Case 1.2 a′′Ph′′a. By Lemma 3.2, there exists a household h′′′ such that ϕNDAA [P ′](h′′′) = a′′. So,

we apply the previous reasoning on h′′ to h′′′, which will end up generating either a contradiction,

or an infinite succession of households {h(k)}. This is not possible because H is finite.

Case 2. If i = τ(h′) 6= τ(h′′) = i′. Since µNDA[P ′] is fair, we have that i′πai. Let a′′ :=

ϕNDAA [P ](h′′), we have the following sub-cases.

Case 2.1 aPh′′a
′′. Then (h′′, i′) has justified envy over (h, i) at apartment a in the assignment

µNDA[P ], a contradiction.

Case 2.2 a′′Ph′′a. By Lemma 3.2, there exists a household h′′′ such that ϕNDAA [P ′](h′′′) = a′′. So,

we apply the previous reasoning on h′′ to h′′′, which will end up generating either a contradiction,

or an infinite succession of households {h(k)}. This is not possible because H is finite.

Therefore, no household h′ is worse off under the assignment µNDA[P ′].

We are ready to prove that truth-telling is a dominant strategy for all households. We assume,

on the contrary, the existence of household h∗ and a successful misrepresentation P ′h∗ of Ph∗ .

That is to say

a′Ph∗a,
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where ϕNDAA [P ](h∗) = a and ϕNDAA [P ′h∗ , P−h∗ ] = a′.

By Lemma B.1, we consider that Ph∗ is the preference list where a′ is the most preferred apart-

ment. Our objective is to show that P ′h∗ is not a successful manipulation. To do that, we follow

the proof of Roth (1982) about the strategy proofness of the DA. We say that household h makes

a match at step t of the NDA algorithm, if h demands ϕNDAA (h) at step t. This proof analizes

the possible steps where h∗ makes a match.

Lemma B.3. Consider the household h∗ with preferences Ph∗ and P ′h∗ such that

ϕNDAA [P ′h∗ , P−h∗ ](h
∗)Rh∗ϕ

NDA
A [P ](h∗).

If ϕNDAA [P ](h0) = ∅ then ϕNDAA [P ′](h0) = ∅.

Proof. By contradiction, suppose that h0 gets an apartment at P ′. Since assignments µNDA[P ]

and µNDA[P ′] are non-wasteful, this means that some household h, previously matched at P , is

unmatched at P ′, violating Lemma B.2.

First, if a household makes a match in the last step of the NDA algorithm, under the true

preferences, then no manipulation is a successful misrepresentation of her true preference list.

Claim B.1. Suppose that h∗ makes a match at t∗, with 1 ≤ t∗ ≤ T , then ϕNDAA [P ′](h) =

ϕNDAA [P ](h) for all h that makes a match at T . Moreover, if h∗ makes a match at T , there is no

profitable deviation P ′h∗ of her true preference list Ph∗ .

Proof. First, we present the argument for h. Let T be the last step of the NDA[P ] and consider

that the household h makes a match at step T , say a = ϕNDAA [P ](h). Since µNDA[P ] is non-

wasteful, all apartments are matched, at T − 1 either

1. a is unmatched, or

2. a is matched to a household h1 who is unmatched at µNDA[P ].

Case 1. Since apartment a was unmatched at T − 1, all matched households prefer their match

at µNDA[P ] to a. By Lemma B.2, this implies that none of them gets a at µNDA[P ′h∗ , P−h∗ ]. By

Lemma B.3 all unmatched households are still unmatched. So, by non-wastefulness, h gets a and

does not strictly improve her match under the profile (P ′h∗ , P−h∗).
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Case 2. Let h1 be the household matched with a at T − 1, who is unmatched at T . For all

matched h2 6= h1, if any, who prefer a to ϕNDAA [P ](h2), we have that (a, h1) %τ(h1) (a, h2), by

fairness of µNDA[P ], or τ(h1)πaτ(h2). Thus, if h strictly improves under (P ′h∗ , P−h∗), then h1, or

an unmatched household, gets a or an apartment preferred to a at µNDA[P ′h∗ , P−h∗ ] because the

assignment is fair; in contradiction to Lemma B.3.

In both cases we conclude that ϕNDAA [P ′h∗ , Ph∗ ](h) = ϕA[P ](h).

Second, the argument is the same for h∗ that makes a match at T since other households h do

not improve her allocation under (P ′h∗ , P−h∗) (Lemma A.2).

Now, we consider that h∗ makes a match at some step t of theNDA[P ] procedure, with 1 ≤ t < T .

We show that no household, matched after t, changes its final allocation when household h∗

misrepresents her true preference list through P ′h∗ .

Claim B.2. Suppose that h∗ makes a match at t∗, 1 ≤ t∗ ≤ T and P ′h∗ and Ph∗ are such that

ϕNDAA [P ′h∗ , P−h∗ ](h
∗)Rh∗ϕ

NDA
A [P ](h∗).

Then ϕNDAA [P ′h∗ , P−h∗ ](h
t) = ϕNDAA [P ](ht) for ht 6= h∗ who makes a match at t, where t∗ ≤ t ≤ T .

Proof. The proof is by induction.

Base of Induction. Starts in t = T . It is true by Claim B.1.

Hypothesis of Induction. Suppose the property is true until step t+ 1.

Induction Step. Let at be the match of ht at ϕNDAA [P ](ht).

Case 1. at is unmatched at t − 1. Since at is unmatched at t − 1, all households matched

before/at t strictly prefer their match to at, by Lemma B.2 they do not get at at P ′. By induction

hypothesis and Lemma B.3, those who make a match after t get the same apartment or nothing,

i.e. non-wastefulness of µNDA guarantees that ϕNDAA [P ′h∗ , P−h∗ ](h
t−1) = ϕNDAA [P ](ht−1).

Case 2. at is matched at t− 1. Let ht−1 be the match of at at t− 1; thus ht−1 has top priority

among households who prefer at to their match and make a match before/at t. By Lemma B.3,

fairness of ϕNDAA [P ′] and Lemma B.2, ht−1 or a household h′ that makes a match after t should

get at, or an apartment prefer to at, at ϕNDAA [P ′]. Since ht−1 and h′ makes a match, if any, after

t, it is not the case by the hypothesis of induction.

In any step where household h∗ makes a match, Claim B.2 implies that ϕNDAA [P ′](h∗) = ϕNDAA [P ](h∗).

That is to say, there is no successful misrepresentation of Ph∗ , and the NDA is strategy-proof.
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Proof of Theorem 5.1 : Let x∗ be the last iteration of the NDAI mechanism, i.e. there are no

interrupter at the end of the NDA phase x∗.1. The last step of the NDA phase is denoted by T .

Individual Rationality. For all institutions i ∈ I, we know that µNDAI(i) ⊆ Chi(M
T
i , qi),

where T is the last iteration of the NDA phase. Thus, (a, h) �i ∅ for all (a, h) ∈ µNDAI .

Therefore, µNDAI(i) � ∅ for all i ∈ I. Moreover, the NDA algorithm stops when every unmatched

household has been rejected by all her acceptable apartments, in this case ϕ(h) = ∅, or every

household is matched to some acceptable apartment, i.e. ϕA(h)Ph∅ for all h ∈ H.

Distributional Constraints. Consider an institution i that does not fulfill its quota in the

assignment µNDAI . Thus, |µNDAI(i)| < qi, i.e. there is at least one apartment a that remains

unassigned. We know that µNDAI is IR, and the over-demand condition holds in the market E,

then for all institutions i and, particularly, the apartment a, there exists an unassigned household

h such that (a, h) is acceptable for i and aPh∅. Considering the NDA phase at Stage x∗.1 we

have that (a, h) belongs to M t
i , for some step t, or not.

Case 1. If (a, h) ∈ M t
i , since i did not fulfill its quota and (a, h) is acceptable for i whose

priorities are responsive, it means that (a, h) has not been assigned to i; this implies the existence

of an institution j such that jπai, i.e. a ∈ θ(j)t′ for some step t′ ≥ t. However, we know that

a /∈ µNDAI(j). Hence, the institution j is an interrupter for a, which contradicts the fact that

there are no interrupters at x∗.

Case 2. (a, h) /∈M t
i because of �i,x∗ , i.e. the priority of institution i at stage x∗ since the NDAI

algorithm actualizes institutions priorities. This case only happens if i is an interrupter over a

and fulfill its quota, thus (a, h) is deleted from �i,x at some stage x of the NDAI algorithm. This

is not possible because the institutions did not fulfill its quota.

In any case we get a contradiction. Therefore, we have that |µNDAI(i)| = qi for all i ∈ I.

Non-wastefulness. Follows from the fact that each institution fills its quota.

There is no justified envy. Let x∗ be the last iteration of the NDAI. Suppose, on the contrary,

the existence of a pair (h, i) that has justified envy over a pair (h′, i′), where τ(h) = i and

τ(h′) = i′. Then, there exists an apartment a such that ϕNDAIA (h′) = a, a ∈ θ(i′), and

i. aPhϕ
NDAI
A (h),

ii. (a, h) ∈ Chi(µNDA(i) ∪ (a, h), qi),

iii. iπai
′.
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By condition i), household h demands the apartment a at some step t. Moreover, the condition

ii) ensures that the pair (a, h) is acceptable for the institution i, i.e. (a, h) ∈ M t
i . Consequently,

we have that i ∈ I ta. We analyze the following cases.

Case 1. i = i′, i.e. τ(h) = τ(h′) = i. Since ϕNDAIA (h′) = a, household h′ demands the apartment

a at some step t′. Moreover condition 1 ensures that h also demands the apartment a at some

step t′, by responsiveness of preferences at each step the institution i picks the top pair with a,

thus

(a, h′) �i (a, h). (6)

Moreover, since no apartment can be paired twice and the fact that priorities are responsive, the

condition ii) implies that (a, h) �i (a, h′) in contradiction with (6).

The following Lemma is required to prove Case 2.

Lemma B.4. Consider an institution i with priorities �i and suppose that #τ(h) = 1 for all

h ∈ H. If i is an interrupter over an apartment a through a household h, then (h, i) has not

justified envy over other pairs (ha, ia) at µNDAI , where (a, ha) ∈ µNDAI(ia).

Proof of Lemma B.4. Since i is an interrupter, there exist steps t and t such that (a, h) ∈ µt(i)

for all t ∈ [t, t], but (a, h) /∈ µt′(i) for all t′ ≥ t.

Because priorities of institutions are responsive, at t + 1 institution i drops (h, a) only if it has

filled its quota and (ht+1, at+1) �i (h, a) for all (ht+1, at+1) ∈ µt+1(i).

Moreover, institutions only improve all along the sequence of tentative matchings, thus (h, a) %i

(h
t+1
, at+1) for all (h, a) ∈ µNDAI(i) and (h

t+1
, at+1) ∈ µt+1(i), and fills its quota at µNDAI , so

(h, a) /∈ Chi(µNDAI(i)∪ (h, a), qi), thus (h, i) has not justified envy over (ha, ia) at µNDAI , where

(a, ha) ∈ µNDAI(ia). �

Case 2. i 6= i′, i.e. τ(h) 6= τ(h′).

Case 2.1 Consider that i is not an interrupter, then i demands apartment a at iteration x∗. Also,

we know that a ∈ θNDAI(i′), then there exists a step t′ such that i′πaj for all j ∈ I ta, for all t ≥ t′,

according to the Phase B.3. Since a /∈ θNDAI(i) we have that i′πai, in contradiction with the

condition iii).

Case 2.1 If i is an interrupter, assuming that (h, i) has justified envy over (h′, i′), through

apartment a, contradicts Lemma B.4.
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In any case we get a contradiction, therefore there is no justified envy at the assignment µNDA.

So, this assignment is fair.

Pareto Undominated for fair assignments. We proceed as in Gale and Shapley (1962).

To prove that µNDA is Pareto undominated, we show that in any other fair assignment, each

household gets the same apartment or an apartment less preferred than ϕNDA(h).

An apartment a is said to be achievable for a household h if there exists a fair assignment

µ = (θµ, ϕµ) such that ϕµA(h) = a. We proceed by induction to show that no household is

rejected by an achievable apartment during the NDA algorithm at iteration x∗ where there are

not interrupters.

Hypothesis of induction. At step t, we assume that no household has been rejected by an achiev-

able apartment. In other words, if a household is rejected by some apartment, this apartment is

not achievable for her.

Induction step. Consider that some household h∗ is rejected at step t + 1 from an apartment

a. We assume, on the contrary, that a is achievable for household h∗. Thus, there exists a fair

assignment µ = (θµ, ϕµ) such that ϕµ(h∗) = (a, i∗). So, the pair (a, h∗) is acceptable for the

institution i∗.

Now, let h be the household assigned to the apartment a at the end of step t + 1, this means

that ϕt+1(h) = (a, i) where i = τ(h). We analyze the following cases.

Case 1. i = i∗. Since ϕt+1(h) = (a, i), the apartment a belongs to θt+1(i). That is to say

(a, h) �i (a, h∗) (7)

because (a, h∗) /∈ µt+1(i). Since priorities are responsive, we have that (a, h) ∈ Chi(µ(i) ∪

(a, h), qi).

Note that h prefers a to all the apartments that have not rejected her, then the induction

hypothesis ensures that household h prefers a to any other achievable apartment for her aPhϕ
µ
A(h).

Moreover, (a, h∗) ∈ µ(i). That is to say, the pair (h, i) has justified envy over the pair (h∗, i) at

the apartment a in the assignment µ, which contradicts the fact that µ is a fair assignment.

Case 2. i 6= i∗. We know that ϕµ(h∗) = (a, i∗), i.e. the pair (a, h∗) is acceptable for the

institution i∗, so i∗ ∈ I t+1
a . Since there are not interrupters at iteration x∗, the offer of i∗ is

rejected only if i fulfills its quota. So, there exist (ax̂, hx̂) ∈ µt+1(i∗) such that (ax̂, hx̂) �i
∗

(a, h∗)

where x̂ = 1, 2, . . . , qi∗ . We know that (a, h∗) ∈ µ(i∗), i.e., some pair (ax̂, hx̂) /∈ µ(i∗). By
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hypothesis of induction, this implies that hx̂ prefers ax̂ to any other achievable apartment for

her, i.e.

ax̂Phx̂ϕ
µ
A(hx̂). (8)

Since (ax̂, hx̂) �i
∗ ∅, by expression (8), we conclude that the pair (hx̂, i

∗) has justified envy over

the pair (h∗, i∗) in the assignment µ, which contradicts the fact that µ is fair.

In any case, a contradiction arises when we assume that household h∗ is rejected by some achiev-

able apartment a. So, no household is rejected by an achievable apartment. Therefore, µNDA is

Pareto undominated by fair assignments.

Strategy Proofness. For each household h, we say that P ′h is a successful misrepresen-

tation of Ph if P ′h is a preference list such that ϕNDAIA [P ′h, P−h](h)Phϕ
NDAI
A [P ](h). Let a′ :=

ϕNDAIA [P ′h, P−h](h), we define the preference list P ′′h where the apartment a′ is declared as the

most preferred apartment of h. Let P ′ and P ′′ be the preference profiles where household h

reports P ′h and P ′′h , respectively, and other households do not change their true preferences.

Let P ′h be a misrepresentation of Ph where apartment a is acceptable. We analyze the following

cases.

Case 1. The institution i is an interrupter for apartment a at some iteration x. As a conse-

quence, all pairs (a, h) are deleted from the preference �i,x, i.e., pairs (a, h) are not acceptable

at preference �i,x′ for all x′ > x. So, household h is not assigned to apartment a in stages x′.1,

with x′ > x. Therefore, P ′h is not a successful misrepresentation of Ph.

Case 2. The institution i is not an interrupter for apartment a. To prove that P ′h is not a

successful misrepresentation, first, we prove the following Lemma.

Lemma B.5. Consider a matching market where the over-demand condition holds. If an apart-

ment is assigned at some step t by some institution, this apartment is assigned under the assign-

ment µNDAI .

Proof of Lemma B.5: Suppose that x∗ is the last iteration of the NDAI where there are no

interrupters. Consider an apartment a that is assigned by some institution i at some step t,

during the NDA phase of stage x∗, i.e. a belongs to θt(i). Since households iterate their demand

to their match, we have that i ∈ I t+1
a . In other words, this apartment is demanded by some

institution at step t + 1. Since the over-demand condition holds, there are no interrupters and

priorities are responsive, the apartment a is assigned to some institution at the end of step t+ 1
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(the institution in I t+1
a with the highest priority at πa). Iterating this argument, we conclude

that the apartment a is assigned to some institution at all steps t′ ≥ t. �

Therefore µNDAI(a) 6= ∅ because the NDA algorithm stops in a finite number of steps. We

construct the proof as in Roth (1982). The following lemma establishes that P ′h and P ′′h are

equivalents in the sense that ϕNDAIA [P ′h, P−h](h) = ϕNDAIA [P ′′h , P−h](h).

Lemma B.6. Consider a matching market through institutions where the over-demand condition

holds. Then ϕNDAIA [P ′h, P−h](h) = ϕNDAIA [P ′′h , P−h](h).

Proof. By paragraphs above, the assignment µNDAI [P ′] is fair with respect to P ′. Let i := τ(h),

it is no possible at ϕNDAIA [P ′h, Ph] that (h, i) has justified envy over other pairs under P ′′ because

no apartment is preferred to a′ under P ′′h . Since other preferences did not change between P ′

and P ′′, it implies that: 1. µNDAI [P ′] is fair with respect to the profile P ′′, i.e. a′ is achievable

for h under the preference profile P ′′; 2. the apartment a′ is the best acceptable achievable

apartment of h under P ′′, and since µNDAI [P ′′] is Pareto undominated by other fair assignments,

we conclude that µNDAI [P ′](h) = µNDAI [P ′′](h).

The following Lemma establishes that households are not worse off when a household successfully

misrepresents her true preference list.

We are ready to prove that truth-telling is a dominant strategy for all households. We assume,

on the contrary, the existence of household h∗ and a successful misrepresentation P ′h∗ of Ph∗ .

That is to say a′Ph∗a, where ϕNDAIA [P ](h∗) = a and ϕNDAIA [P ′h∗ , P−h∗ ] = a′.

By Lemma B.6, we consider that P ′h∗ is the preference list where a′ is the most preferred apart-

ment. Our objective is to show that P ′h∗ is not a successful manipulation. To do that, we follow

the proof of Roth (1982) about the strategy proofness of the DA. We say that household h makes

a match at step t of the NDA algorithm, if h demands ϕNDAIA (h) at step t. This proof analizes

the possible steps where h∗ makes a match.

First, if a household makes a match in the last step of the NDA algorithm, under the true

preferences, then no manipulation is a successful misrepresentation of her true preference list.

Claim B.3. Let x∗ be the last iteration of the NDAI. Suppose that h∗ makes a match at t∗, with

1 ≤ t∗ ≤ T , then ϕNDAIA [P ′](h) = ϕNDAIA [P ](h) for all h that makes a match at T . Moreover, if

h∗ makes a match at T , there is no profitable deviation P ′h∗ of her true preference list Ph∗ .
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Proof. First, we present the argument for h. Let T be the last step of the NDA[P ] and consider

that the household h makes a match at step T , say a = ϕNDAIA [P ](h). Since µNDAI [P ] is non-

wasteful, all apartments are matched, at T − 1 either

1. a is unmatched, or

2. a is matched to a household h1 who is unmatched at µNDAI [P ].

Case 1. Since apartment a was unmatched at T − 1, all matched households prefer their match

at µNDAI [P ] to a. By Lemma B.2, this implies that none of them gets a at µNDAI [P ′h∗ , P−h∗ ].

By Lemma B.3 all unmatched households are still unmatched. So, by non-wastefulness, h gets a

and does not strictly improve her match under the profile (P ′h∗ , P−h∗).

Case 2. Let h1 be the household matched with a at T − 1, who is unmatched at T . For all

matched h2 6= h1, if any, who prefer a to ϕNDAIA [P ](h2), we have that (a, h1) %τ(h1) (a, h2), by

fairness of µNDAI [P ], or τ(h1)πaτ(h2). Thus, if h strictly improves under (P ′h∗ , P−h∗), then h1, or

an unmatched household, gets a or an apartment preferred to a at µNDAI [P ′h∗ , P−h∗ ] because the

assignment is fair; in contradiction to Lemma B.3.

In both cases we conclude that ϕNDAIA [P ′h∗ , Ph∗ ](h) = ϕA[P ](h).

Second, the argument is the same for h∗ that makes a match at T since other households h do

not improve her allocation under (P ′h∗ , P−h∗) (Lemma A.2).

Now, we consider that h∗ makes a match at some step t of the NDA[P ] procedure, with 1 ≤

t < T . In any step where household h∗ makes a match, Claim B.2 implies that ϕNDAIA [P ′](h∗) =

ϕNDAIA [P ](h∗). That is to say, there is no successful misrepresentation of Ph∗ , and the NDAI is

strategy-proof.

Proof of Theorem 5.2:

Distributional Constraints. See the proof of Theorem 5.1.

Non-wastefulness. Follows from the fact that each institution fills its quota.

There is no justified envy over households of the same type. Let x∗ be the last iteration

of the NDAI. Suppose, on the contrary, the existence of a pair (h, i) that has justified envy over

a pair (h′, i), where i ∈ τ(h)∩ τ(h′). Then, there exists an apartment a such that ϕNDAA (h′) = a,

a ∈ θ(i), and

i. aPhϕ
NDA
A (h),
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ii. (a, h) ∈ Chi(µNDA(i) ∪ (a, h), qi).

The proof is analogous to the proof of Case 1 in Theorem 5.1.

Note that Case 2 can not be extended when households are attached to multiple institutions

because it a household h can form a blocking pair with another institution i′ 6= i, which is what

happens in example 5.3.

Pareto Undominated for fair over the same type assignments. We proceed by induction

to show that no household is rejected by an achievable apartment during the NDA algorithm at

iteration x∗ where there are not interrupters.

Hypothesis of induction. At step t, we assume that no household has been rejected by an achiev-

able apartment. In other words, if a household is rejected by some apartment, this apartment is

not achievable for her.

Induction step. Consider that some household h∗ is rejected at step t + 1 from an apartment

a. We assume, on the contrary, that a is achievable for household h∗. Thus, there exists a fair

assignment µ = (θµ, ϕµ) such that ϕµ(h∗) = (a, i∗). So, the pair (a, h∗) is acceptable for the

institution i∗.

Now, let h be the household assigned to the apartment a at the end of step t + 1, this means

that ϕt+1(h) = (a, i) where i = τ(h). We analyze the following cases.

Case 1. i ∈ τ(h∗). Since ϕt+1(h) = (a, i), the apartment a belongs to θt+1(i). That is to say

(a, h) �i (a, h∗) (9)

because (a, h∗) /∈ µt+1(i). Since priorities are responsive, we have that (a, h) ∈ Chi(µ(i) ∪

(a, h), qi). Note that h prefers a to all the apartments that have not rejected her, then the

induction hypothesis ensures that household h prefers a to any other achievable apartment for

her aPhϕ
µ
A(h). Moreover, (a, h∗) ∈ µ(i). That is to say, the pair (h, i) has justified envy over the

pair (h∗, i) at the apartment a in the assignment µ, which contradicts the fact that µ is a fair

assignment.

Case 2. i /∈ τ(h∗). We know that ϕµ(h∗) = (a, i∗), i.e. the pair (a, h∗) is acceptable for the

institution i∗, so i∗ ∈ I t+1
a . Since there are not interrupters at iteration x∗, the offer of i∗ is rejected

only if i fulfills its quota. So, there exist (ax̂, hx̂) ∈ µt+1(i∗) such that (ax̂, hx̂) �i
∗

(a, h∗) where

x̂ = 1, 2, . . . , qi∗ . We know that (a, h∗) ∈ µ(i∗), i.e., some pair (ax̂, hx̂) /∈ µ(i∗). By hypothesis of
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induction, this implies that hx̂ prefers ax̂ to any other achievable apartment for her, i.e.

ax̂Phx̂ϕ
µ
A(hx̂). (10)

Since (ax̂, hx̂) �i
∗ ∅, by expression (10), we conclude that the pair (hx̂, i

∗) has justified envy over

the pair (h∗, i∗) in the assignment µ, which contradicts the fact that µ is fair.

In any case, a contradiction arises when we assume that household h∗ is rejected by some achiev-

able apartment a. So, no household is rejected by an achievable apartment. Therefore, µNDA is

Pareto undominated by fair assignments.

Strategy-proofness. The prove is analogous to Theorem 5.1. In the following Lemma we

generalize the Case 1 of strategy-proofness’ proof in Theorem 5.1 when households are attached

to multiple institutions.

Claim B.4. Consider a market through institutions with distributional constraints where the

over-demand condition holds. Consider a pair (a, h) such that aPhϕ
NDAI
A [P ](h). There is no

misrepresentation P ′h of Ph such that ϕNDAIA [P ′h, P−h](h) = a.

Proof. Let P ′h be a misrepresentation of Ph where apartment a is acceptable. We analize the

following cases.

Case 1. All institutions in i ∈ τ(h) are interrupters for the apartment a. As a consequence, all

pairs (a, h) are deleted from the preference �i,xi , i.e., pairs (a, h) are not acceptable at preference

�i,x′ for all x′ > xi. So, household h is not assigned to apartment a in stages x′.1, with x′ > xi.

Therefore, P ′h is not a successful misrepresentation of Ph.

Case 2. There exists an institution i ∈ τ(h) such that i is not an interrupter for apartment a.

We proceed as in Theorem 5.1 to prove that no misrepresentation of Ph is successful.

Therefore, Claim B.4 implies that the NDAI algorithm is strategy-proof. �
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1 Proof of Theorem 6.1.

We adapt the proof of Kamada and Kojima (2015b) to the Nested Deferred Acceptance

algorithm with regional preferences.

First, as they do, we establish the relation between matching markets with regional pref-

erences and matching with contracts. So, let X = D × H be the set of contracts. Note

that, for each doctor d, the preference profile Ph induces a preference relation P̃h over

({d} × H) ∪ {∅} in the following way (d, h′)P̃d(d, h) if and only if h′Pdh. Moreover, we

say that (d, h)P̃d∅ if hospital H is unacceptable under Pd.

Now, for each region r ∈ R, we define preferences �r and its associated choice rule Chr
over all subsets of D × Hr. For any X ′ ⊂ D × Hr, let ω(X ′) := (wh(X

′))h∈Hr be the

vector such that wh(X
′) = |{(d, h) ∈ X ′|d �h ∅}|. For each X ′, the chosen set of
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†Colegio de Mexico, dcantala@colmex.mx
‡Universidad Popular Autónoma del Estado de Puebla, damianemilio.gibaja@upaep.mx
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contracts Chr(X ′) is defined by

Chr(X
′) =

⋃
h∈Hr

{
(d, h) ∈ X ′

∣∣∣|{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ (C̃hr(ω(X
′)))h

}
.

(1)

That is, each hospital h ∈ Hr chooses its (C̃hr(ω(X ′)))h most preferred contracts available

in X ′. The domain of the choice rule Chr can be extended to all subsets of X by

Chr(X
′) = Chr({(d, h) ∈ X ′|h ∈ Hr})

for any X ′ ⊆ X .

Definition 1. (Hatfield and Milgrom (2005)). Choice rule Chr(·) satisfies the substitutes

condition if there does not exist contracts x, x′ ∈ X and a set of contracts X ′ ⊆ X such

that x′ /∈ Chr(X ′ ∪ {x′}) and x′ ∈ Chr(X ′ ∪ {x, x′}).

Definition 2. (Hatfield and Milgrom (2005)). Choice rule Chr(·) satisfies the law of ag-

gregate demand if for all x′ ⊆ X ′′ ⊆ X , |Chr(X ′)| ≤ |Chr(X ′′)|.

Proposition 1.1. Suppose that �r satisfies the substitutes condition. Then the choice rule

Chr(·) defined above satisfies the substitutes condition and the law of aggregate demand.

Proof. The Nested Deferred Acceptance algorithm is not related with the choice rule Chr.

So, this proposition is taken from Proposition 1 of Kamada and Kojima (2015b).

A subset X ′ of X = D × H is said to be individually rational if (1) for any d ∈ D,

|{(d, h) ∈ X ′|h ∈ H}| ≤ 1, and if (d, h) ∈ X ′ then hPd∅, and (2) for any r ∈ R,

Chr(X
′) = X ′ ∩ (D ×Hr).

Definition 3. A set of contracts X ′ ⊆ X is a stable allocation if

(1) it is individually rational, and

(2) there exists no region r ∈ R, hospital h ∈ Hr, and a doctor d ∈ D such that (d, h)P̃dx

and (d, h) ∈ Chr(X ′ ∪ {(d, h)}), where x is the contract that d receives at X ′ if any

and ∅ otherwise.
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When condition (2) is violated by some (d, h), we say that (d, h) is a block of X ′. A

doctor-optimal stable allocation in the matching model with contracts is a stable allocation

that every doctor weakly prefers to every other stable allocation (Hatfield and Milgrom,

2005).

Given any individually rational set of contractsX ′, define a corresponding matching µ(X ′)

in the original model by settingµ(d)(X ′)) = h if and only if (d, h) ∈ X ′; andµ(d)(X ′) = ∅

if and only if no contract associated with d is in X ′. Since each doctor regards any set of

contracts with cardinality of at least two as unacceptable, each doctor receives at most one

contract at X ′ and hence µ(X ′) is well defined for any individually rational X ′.

Proposition 1.2. If X ′ is a stable allocation in the associated model with contracts, then

the corresponding matching µ(X ′) is a stable matching in the original model.

Proof. See Proposition 2 of Kamada and Kojima (2014b).

Remark 1. It is is important to recall the connection between the Nested Deferred Ac-

ceptance and the Cumulative Offer Process (Hatfield and Milgrom, 2005). That is to say,

if doctor d asks for her most preferred hospital h at some step in the NDA, then contract

(d, h) is proposed at the same stpe of the cumulative offer process. Also, the set of doctors

accepted by a hospital at some step of the NDA is equivalent to the set of contracts held

at the corresponding step of the cumulative offer process. Thus, if X ′ is the output of the

cumulative offer process, then µ(X ′) is the matching generated by the NDA.

Now, we are ready to continue with the proof of Theorem 6.1. By Proposition 1, the choice

function of each region satisfies the substitutes condition and the law of aggregate demand in

the associate model of matching with contracts. By Hatfield and Milgrom (2005), Hatfield

and Kojima (2009), and Hatfield and Kominers (2010), the cumulative offer process with

choice functions satisfying these conditions produces a stable allocation and is strategy-

proof. The former fact, together with Remark 1 and Proposition 1.2, implies that the out-

come of the Nested Deferred Acceptance Algorithm is a stable matching in the original

model. By Remark 1, we conclude that the NDA mechanism is strategy-proof for doctors.
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In order to find an assignment between hospitals and doctors that respect the distributional

constraints and regional caps, Kamada and Kojima introduced the Generalized Flexible

Deferred Acceptance (GFDA) algorithm.

For each region r fix a quasi-choice rule C̃hr. The GFDA algorithm proceed as follows

1. Begin with an empty matching, i.e. µd = ∅ for all d ∈ D.

2. Choose a doctor d arbitrarily who is currently not tentatively matched to any hospital

and who has not applied to all acceptable hospitals yet. If such a doctor does not exist,

then terminate the algorithm.

3. Let d apply to the most preferred hospital h at Hd among the hospitals that have not

rejected d so far. If d is unacceptable to h, then reject this doctor and go back to step

2. Otherwise, let r be the region such that h ∈ Hr and define vector ω = (ωh)h ∈ Hr

by

(a) ωh is the number of doctors currently held at h plus one, and

(b) wh is the number of doctors currently held at h if h 6= h,

4. Each hospital h ∈ Hr considers the new applicant d (if h = h) and doctors who

are temporarily held from the previous step together. It holds its (C̃hr(w))h most

preferred applicants among them temporarily and rejects the rest (so doctors held at

this step may be rejected in later steps). Go back to step 2.
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