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Abstract

We analyze dynamic assignment problems where agents succes-
sively receive different objects (positions, offices, etc.). A finite set of
n vertically differentiated indivisible objects are assigned to n agents
who live n periods. At each period, a new agent enters society, and
the oldest agent retires, leaving his object to be reassigned. We de-
fine independent assignment rules (where the assignment of an object
to an agent is independent of the way other objects are allocated to
other agents), efficient assignment rules (where there does not exist
another assignment rule with larger expected surplus), and fair assign-
ment rules (where agents experiencing the same circumstances have
identical histories in the long run). When agents are homogenous, we
characterize efficient, independent and fair rules as generalizations of
the seniority rule. When agents draw their types at random, we prove
that independence and efficiency are incompatible, and that efficient
and fair rules only exist when there are two types of agents. We char-
acterize two simple rules (type-rank and type-seniority) which satisfy
both efficiency and fairness criteria in dichotomous settings.
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1 Introduction

How should one allocate offices to faculty members and graduate students
in academic departments, dormitory rooms to students, subsidized housing
to low-income families? How should one post career diplomats to embassies,
officers to military bases, teachers to high schools? All these assignment
problems share a common structure: they involve a fixed number of durable
objects (positions, offices, housing units) which are successively assigned to
generations of agents. Because the number of objects is fixed, reassignments
typically only occur when one agent (or a cohort of agents) leaves the orga-
nization. For example, offices and embassy posts are reassigned when faculty
members or diplomats leave or retire ; dormitory rooms become vacant when
students leave the university.2 At this point, assignment mechanisms might
generate a cascade of reassignments, as agents who receive a new object
relinquish their old object which in turn is assigned to some other agent.

In practice, the rules which are used to solve these assignment problems
vary widely.3 Oftentimes, the rules involve a priority structure based on se-
niority, merit and the history of past assignments. Many rules also respect an
individual rationality constraint, as agents cannot be forced to accept an ob-
ject worse than the one they currently hold.4 Finally, the rules often balance
the benefits of reassigning objects with the moving costs of reallocations.
Our objective in this paper is to provide an axiomatic study of assignment
rules for durable objects to successive generations of agents, in order to bet-
ter understand the importance of seniority, randomness and moving costs in
the design of dynamic allocation rules.

The dynamic assignment problems we consider differ from standard static
assignment problems in three important dimensions. First, the set of agents
varies over time, as agents enter and exit society. Second, as agents live for

2Reassignments could also occur even if no agent leaves the organization. However, we
will focus on situations where agents cannot jointly benefit from reallocating the objects
among themselves, so that reassignment opportunities only arise when an agent leaves the
organization.

3Kurino (2008) discusses the rules used by American universities and colleges to assign
students to dormitories. The assignment of teachers to French high schools which spurred
our interest in Markovian assignment rules is documented on the website of the French
Ministry of Education, http://www.education.gouv.fr. Casual discussions at different aca-
demic departments show that the rules used to allocate offices to faculty members vary
widely from uniform random assignments to fixed, seniority-based priority rules.

4This individual rationality constraint, which was introduced by Abdulkadiroglu and
Sonmez (1999) in the context of house allocation mechanisms, is almost always imposed in
mechanisms to allocate student dormitories, as noted by Kurino (2008). This constraint
is also binding in the mechanism allocating teachers to high schools in France.
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more than one period, they evaluate entire sequences of assignments over
their lifetime rather than a single assignment. Third, by the individual ra-
tionality constraint, the assignment at date t constrains the assignment at
date t+1, creating a dynamic dependence in the assignment problem. These
features introduce new difficulties, and lead us to define new dynamic axioms
over assignment rules and to apply techniques borrowed from the study of
finite Markov chains in order to study the long run properties of assignment
rules. In order to deal with this dynamic dimension of assignment problems,
we make a number of simplifying assumptions. First, we suppose that objects
are vertically ranked and that all agents share the same preferences.5 Sec-
ond, we restrict attention to Markovian assignments, which do not depend
on history or calendar time, but only on the current assignment of objects to
agents. Finally, we suppose that utilities are additive separable over different
periods. Under these simplifying assumptions, we are able to obtain sharp
characterizations of assignment rules satisfying various dynamic properties.

In the first part of the paper, we consider homogeneous societies formed of
identical agents. All assignments are equally efficient, and we concentrate our
analysis on equity. Our main result is easily illustrated in a simple example
where a single object is assigned to agents living two periods. When the
object becomes available, there are only two ways to assign it: either to
the old or to the young agent. If the object is assigned to the old agent
(the seniority rule), every agent will obtain it for one period when he is
old. If the object is assigned to the young agent (the replacement rule),
agents who are born every other period will keep the object for two periods,
whereas other agents will never get it. Hence, the seniority rule is fair in
the sense that it guarantees the same sequence of assignments to every agent
irrespective of his date of birth. On the other hand, the replacement rule,
while very inequitable, minimizes reassignment costs. This intuition can be
generalized to a society with an arbitrary number of agents and objects.
We characterize a family of rules (convex combinations of the seniority rule
and the rule which assigns object j to the agent who owns object j − 1) as
the only rules which satisfy two properties of independence (the assignment
of object j to agent i is independent of the current assignment of objects
to other agents) and fairness (in the long run, every agent is guaranteed
to obtain the same sequence of assignments). However, these rules imply
that all objects are reassigned every period, and result in high reallocation

5This assumption is reasonable in some contexts, like the assignment of diplomats to
embassies or teachers to high schools, where most diplomats and teachers have a common
preference over different positions. It is also likely to hold in the assignment of offices or
objects whose characteristics result in a clear vertical ranking.
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costs. By contrast, the replacement rule minimizes reassignment costs. We
also study two other dynamic properties of the Markov chain generated by
assignment rules and provide sufficient conditions for ergodicity (in the long
run, assignments of agents are independent of the initial conditions) and
irreducibility (all assignments can be reached with positive probability in the
long run).

In the second part of the paper, we analyze heterogeneous societies where
agents’ productivities are drawn at random at the time they are born. We as-
sume that the surpluses generated by a match between an agent and an object
is supermodular, so that an efficient assignment involves assortative match-
ing, with agents of higher productivity receiving objects of higher rank. Our
results for heterogeneous societies are mostly negative, showing incompati-
bility between the Markovian structure of the assignment rule and efficiency.
In particular, we prove two impossibility results concerning the existence of
assignment rules which are independent and efficient and of assignment rules
which are efficient and guarantee that two agents born at different times in
identical societies receive the same sequence of assignments.6 This last re-
sult highlights the strength of the requirement that assignment sequences be
independent of history in heterogeneous societies, and indicates that some
level of inequity must be tolerated to reach efficient assignments.

In its vast majority, the literature on matching and allocation rules only
considers static assignment problems (See Roth and Sotomayor (1990) and
Thomson (2007) for exhaustive accounts of the literature on matching and
allocation models respectively). In matching markets where agents enter/exit
the market, Blum et al. (1997) and Cantala (2004) study the re-stabilization
process triggered by such disruptions. The individual rationality condition,
which is central to our analysis, was introduced by Abdulkadiroglu and Son-
mez (1999) in the context of house allocations. (See also Sonmez and Ünver
(2008) and Cantala and Sanchez (2008)). Moulin and Stong (2002) and
(2003) analyze a problem of allocation of balls to different urns which bears
some resemblance to the problem of allocation of objects to agents with dif-
ferent ages.

In independent work, Kurino (2008) has formulated a similar model of
dynamic assignment of objects to overlapping generations of agents. On the
one hand, Kurino (2008) considers a more general framework, allowing agents
to have nonseparable utilities over sequences of assignments and to have
different preferences. He also supposes that groups of agents (rather than

6This last impossibility result is obtained when the number of possible productivities
is greater or equal to three. In dichotomous societies where agents can only draw low or
high productivities, efficient and fair assignment rules exist.
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single individuals) enter and leave society at every period. On the other hand,
instead of considering abstract families of assignment rules, Kurino (2008)
focuses on a small number of special rules, and discusses the properties that
these rules satisfy. The two approaches are complementary, addressing the
same problem from very different angles, raising different issues and giving
different solutions.

The paper is also related to a broader literature embedding assignment
problems in dynamic contexts.7 Ünver (2010) analyzes kidney exchange in a
dynamic framework, where pairs of kidney donors-recipients enter and exit
the pool of matchable agents according to a random Poisson process. Ab-
dulkadiroglu and Loertscher (2007) analyze a two-period dynamic house al-
location problem where agents who choose a bad house in the first period
get priority for the good house in the second, and show that this dynami-
cal linkage between allocations improves welfare. In a very different context
where side-payments are allowed, Athey and Segal (2007), Bergemann and
Välimäki (2010) and Gershkov and Moldovanu (2009a, 2009b), Parkes and
Singh (2003), study dynamic assignment problems, where agents enter se-
quentially, and participate in a Vickrey-Clarke-Groves revelation mechanism
which determines transfers and good allocations. They show that Vickrey-
Clarke-Groves mechanisms and optimal stopping rules can be combined to
obtain efficient dynamic mechanisms.

The rest of the paper is organized as follows. We present the model and
illustrate it with an overlapping generations model where agents live for three
periods in Section 2. Section 3 is devoted to the analysis of the model with
homogeneous agents, and Section 4 considers the model with heterogeneous
agents. In Section 5, we discuss two extensions of the analysis and outline
some directions for future research.

7There is also an older literature in operations research and management which has
studied dynamical control of matching processes. See for example Talluri and Van Rysin
(2004) for an introduction to the literature on dynamic pricing and revenue management
and Bartholomew (1982) and Nilakantan and Ragavhendra (2005) for an account of the
literature on manpower planning.
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2 The model

2.1 Agents, objects and assignment rules

2.1.1 Agents and objects

We consider an overlapping generations model where every agent lives for
n periods. At each date t = 0, ..., one agent enters and one agent exists
society.8 Hence, every agent is characterized by his date of birth t.

There are n durable objects, indexed by j = 1, 2, ...n which are succes-
sively reassigned to agents in society. 9 Every agent thus receives a sequence
of n assignments over his lifetime, j = (j1, ..., jn). We suppose that agents
have additively separable utilities,

Ut =
n∑
τ=1

ut(jτ ).

Furthermore, we suppose that all agents have common preferences over the
objects, and that objects are ordered in such a way that higher objects gen-
erate higher utility, so that

ut(j) = u(j),

where u(j) > u(j′) if and only if j > j′. Finally, we concentrate on Markovian
assignment rules, which are independent of calendar time t, so that an agent’s
assignment only depends on his age and not on his date of birth. As a
consequence, we can identify any agent in society by his age i = 1, ..., n
rather than his date of birth t.

2.1.2 Assignments and assignment rules

An assignment µ is a one-to-one bijective mapping between the set of agents
I = {1, 2, ..., n} and the set of objects J = {1, 2, ..., n}.10 We denote by M
the set of all assignments.

8We make this assumption to simplify notations. However, as indicated in Section 5
our analysis carries over to a model where groups of agents enter and exit society at any
date t.

9Again, the assumption that there is an equal number of objects and agents is made
for convenience; but the analysis could easily be extended to societies where the number
of agents and objects are different, as discussed in Section 5.

10Alternatively, the matching µ can be represented as a permutation on the set
{1, 2, ..., n}.
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In our dynamic model, we are interested in mechanisms which, starting
from a given assignment µ at date t generate a probability distribution over
new assignments at date t + 1. General Markovian assignment rules would
specify transition probability matrices over M. However, most rules used in
practice are not formulated in terms of general Markov chains, which allow
for simultaneous reallocation of objects, but as rules allocating single objects.
In this paper, we adopt this view, and consider a more restrictive setting,
where an assignment rule operates object by object rather than over the
entire set of objects simultaneously. Hence, a Markovian assignment rule
determines, for each object j and given the assignment of objects in J \ j to
the agents in I, the probability with which object j is assigned to an agent of
age i. We incorporate the individual rationality constraint in this definition
by assuming that object j is only assigned with positive probability to agents
who hold an object worse than j.

Formally, we define a truncated assignment ν as a one-to-one injective
map from I \ {1} to J , assigning to any agent but the youngest agent, an
object in J . A Markovian assignment rule α is a collection of probability
distributions over I, αj(ν) for any j ∈ J , any ν such that j is not assigned
in ν, such that

∑
i|ν(i)<j αj(ν, i) = 1.

2.1.3 Four natural assignment rules

We describe four natural ways to assign objects in our dynamic setting.

The seniority rule assigns object j to the oldest agent with an object smaller
than j, αj(ν, i) = 1 if and only if i = max{k|ν(k) < j}.

The rank rule assigns object j to the agent who currently owns object j− 1,
αj(ν, i) = 1 if and only if ν(i) = j − 1.

The uniform rule assigns object j to all agents who own objects smaller than
j with equal probability, αj(ν, i) = 1

|{k|ν(k)<j}| for all i such that ν(i) < j.

The replacement rule assigns object j to the entering agent, αj(ν, i) = 1 if
and only if i = 1.

2.1.4 Markov chains generated by assignment rules

Given an assignment rule α, we compute the transition probability matrix
of the Markov chain over assignments generated by α. To this end, note
that for any two assignments µ and µ′, there is a unique sequence of agents
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i0 = n + 1, i1 = µ′−1(µ(i0 − 1)), ..., im = µ′−1(µ(im−1 − 1)), ..., iM = 1, such
that the reassignment of objects following the sequence leads from µ to µ′.
First, the good held by the last agent at date t, µ(n) is assigned to agent
i1 = µ′−1(µ(n)). Then the good held by agent i1 at period t+ 1 (or by agent
i1 − 1 at period t) is reallocated to the agent i2 = µ′−1(µ(i1 − 1)), etc. The
process continues for a finite number of periods until a good is assigned to
agent iM = 1, after which no other good can be reallocated.
The probability of reaching µ′ from µ is the probability that the sequence of
reallocations of goods between agents i0, ..., iM is realized:

p(µ′|µ) =
M−1∏
m=0

αµ(im−1)(ν
m, θ, im+1) (1)

where νm(i) = µ(i− 1) for i 6= it, t = 1, 2, ...,m and νm(i) = µ′(i) for i = it,
t = 1, 2, ...,m.

We conclude by noting that assignment rules operating over single objects
are less general than assignment rules allowing for simultaneous reallocations.
As the following example shows, there exist Markov chains over M that
cannot be generated by single object assignment rules.

Example 1 Let n = 3. We represent an assignment as a triple (i, j, k),
where i = µ(1), j = µ(2) and k = µ(3). We focus on the three assignments
µ1 = (1, 2, 3), µ2 = (1, 3, 2), µ3 = (2, 1, 3). Consider the Markov process
p(µ1|µ1) = 1 and p(µ3|µ2) = 1. Let α2(ν) be the assignment rule allocating
object 2 for the truncated assignment ν(2) = 1, ν(3) = 3. Because p(µ1|µ1) =
1, we must have α2(ν, 2) = 1. However, because p(µ3|µ2) = 1 we must also
have α2(ν, 1) = 1, a contradiction.

2.2 An illustrative example

We analyze assignment rules in a three agent society. An assignment is given
by a triple (i, j, k), where i = µ(1), j = µ(2) and k = µ(3). There are six
possible assignments:

µ1 : (1, 2, 3)

µ2 : (1, 3, 2)

µ3 : (2, 1, 3)

µ4 : (2, 3, 1)

µ5 : (3, 1, 2)

µ6 : (3, 2, 1).
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We analyze the properties of the Markov chains generated by four natural
assignment rules.

2.2.1 The seniority rule

The seniority rule assigns an object to the oldest agent eligible to receive
it. In order to understand how the Markov chain generated by the seniority
rule is constructed, suppose that the current assignment is µ1. At the next
period, object 3 is reassigned to agent 3 who holds object 2. In turn, object
2 is reassigned to agent 2, who holds object 1, and object 1 is finally allo-
cated to the entering agent. This shows that the Markov chain generated by
the seniority rules moves from µ1 to µ1 with probability 1. The transition
probability matrix is given by:

P =


1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0



Figure 1: Seniority assignment for three agents

The transitions between states are represented in Figure 1. The Markov
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chain generated by the seniority rule is convergent: the system converges to
the absorbing state µ1 in at most two steps.

2.2.2 The rank rule

The rank rule assigns object j to the agent who holds object j − 1. The
transition probability matrix is given by:

P =


1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0



Figure 2: Rank assignment for three agents

Figure 2 shows the transitions between states for the Markov chain gener-
ated by the rank rule. The dynamic properties of the Markov chain generated
by the rank rule are very similar to those of the Markov chain generated by
the seniority rule. The system converges to the absorbing state µ1 in at most
two steps.11

11The only difference between the two dynamical systems is that it takes two steps to
go from µ3 to µ1 with the rank rule, and only one step with the seniority rule.
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2.2.3 The uniform rule

The uniform rule assigns object 3 with equal probability to all three agents,
object 2 with equal probability to the entering agent and the agent holding
object 1, and object 1 to the entering agent. We compute the transition
probability matrix of the uniform rule as:

P =



1
6

1
3

1
6

0 1
3

0
1
2

0 1
2

0 0 0
1
3

1
6

0 1
6

0 1
3

1 0 0 0 0 0
0 1

2
0 1

2
0 0

0 1 0 0 0 0



Figure 3: Uniform assignment for three agents

The transitions between states are given in Figure 3. All feasible transi-
tions (which satisfy the individual rationality condition) are present on the
graph. One can easily check that there is a path from any assignment to any
assignment. Hence the Markov chain is irreducible, and in the long run, the
system converges to the unique invariant distribution (p1, ..., p6) over states
(µ1, µ2, ..., µ6):
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p1 =
27

84
' 0.32, p2 =

21

84
' 0.25, p3 =

15

84
' 0.18, p4 =

7

84
' 0.08,

p5 =
9

84
' 0.10, p6 =

5

84
' 0.06.

The invariant distribution puts the highest weight on the monotonic as-
signment µ1 and the lowest weight on the reverse assignment µ6.

2.2.4 The replacement rule

The replacement rule assigns any object to the entering agent, and generates
a Markov chain represented by the following transition probability matrix:

P =


0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0



Figure 4: Replacement assignment for three agents

The Markov chain generated by the replacement rule results in two cycles,
as illustrated in Figure 4. This Markov chain is not ergodic: the long run
behavior of the system depends on the initial conditions.
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3 Properties of Assignment Rules in Homo-

geneous Societies

In this Section, we characterize assignment rules in homogeneous societies by
imposing axioms of independence, convergence, ergodicity and irreducibility.

3.1 Independent Assignment Rules

We first state our independence axiom:

Definition 1 A Markovian assignment rule α satisfies independence if, for
any i, j, ν, ν ′ such that ν(i) = ν ′(i), αj(ν, i) = αj(ν

′, i).

The independence property is appealing because it states that an agent’s
assignment only depends on his characteristics (age and current assignment)
and not on the characteristics of the other agents. Independent assignment
rules are simple to implement, have low informational requirements, and
capture the idea that an agent should not be held responsible for the way
objects are assigned to the other agents. A stronger independence property
states that an agent’s assignment only depends on the object he currently
holds and not on his age:

Definition 2 A Markovian assignment rule α satisfies strong independence
if, for any i, i′, any j and any ν, ν ′ such that ν(i) = ν ′(i′), αj(ν, i) = αj(ν

′, i′).

The rank, uniform and replacement rules are all strongly independent.
The seniority rule is not independent.12 As the following Lemma shows, the
gap between independent and strongly independent rules is small.

Lemma 1 If a Markovian rule α satisfies independence, then for ν, ν ′ and
i, i′ such that ν(i) = ν ′(i′), for any j < n, αj(ν, i) = αj(ν

′, i′) and αn(ν, i) +
αn(ν, i′) = αn(ν ′, i) + αn(ν ′, i′).

Lemma 1 shows that if a Markovian assignment rule satisfies indepen-
dence, the assignment of any object j < n is strongly independent. However,
this property does not hold for the assignment of the highest object, n. For

12The seniority rule satisfies a weaker independence property, namely that the assign-
ment of object j to an agent only depends on the assignment of agents who are eligible to
receive object j.
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the assignment of the last object, the only constraint imposed by indepen-
dence is that, for any two assignments which only differ in the positions of i
and j, the total probability assigned to agents i and j be constant.

This result relies on a simple algebraic argument. Consider the assign-
ment of some object j under two truncated assignments ν̃ and ν̃ ′ which only
differ in the assignment of objects to some pair of agents, i, i′. In other
words, ν̃(i) = ν̃ ′(i′) < j, ν̃(i′) = ν̃ ′(i′) and ν̃(k) = ν̃ ′(k) for all k 6= i, i′.
By independence, the assignment of object j to an agent k 6= i, i′ must be
identical under ν̃ and ν̃ ′, so that αj(ν̃, k) = αj(ν̃ ′, k). Now, because αj(ν̃, ·)
and αj(ν̃ ′, ·) are probability distributions,

∑
k

αj(ν̃, k) + αj(ν̃, i) + αj(ν̃, i
′) = 1 =

∑
k

αj(ν̃ ′, k) + αj(ν̃ ′, i) + αj(ν̃ ′, i
′),

implying that αj(ν̃, i) + αj(ν̃, i
′) = αj(ν̃ ′, i) + αj(ν̃ ′, i

′).
At this point, we distinguish between the allocation of the best object n

and of any other object j < n. If one assigns j < n, the argument above
applies to any assignment such that ν̃(i′) = ν̃ ′(i) > j, so that αj(ν̃, i

′) =
αj(ν̃ ′, i) = 0, resulting in αj(ν̃, i) = αj(ν̃ ′, i

′). To finish the argument, we
need to show that this equality holds for all assignments ν and ν ′ such that
ν(i) = ν ′(i′). This last step derives from the independence of the assignment

rule: as ν(i) = ˜ν(i) and ν ′(i′) = ν̃ ′(i′), by independence, αj(ν, i) = αj(ν̃, i) =
αj(ν̃ ′, i

′) = αj(ν
′, i′).

We finally note that strongly independent assignment rules have a very
simple representation: for any object j, the assignment rule specifies a prob-
ability distribution over the finite set {1, 2, ..., j − 1}, where αj(k) describes
the probability that object j is assigned to the agent who holds object k.

3.2 Dynamic properties of assignment rules

We recall the definitions of well-known properties of finite Markov chains
(See Kemeny and Snell (1960) or Isaacson and Madsen (1976)).

Definition 3 Two states s and s′ intercommunicate if there exists a path in
the Markov chain from s to s′ and a path from s′ to s.

Definition 4 A set of states C is closed if, for any states s ∈ C, s′ /∈ C, the
transition probability between s and s′ is zero.

13



Definition 5 A recurrent set is a closed set of states such that all states in
the set intercommunicate. If the recurrent set is a singleton, it is called an
absorbing state.

With these notions in hand, we can define dynamic properties of the
Markov chains generated by assignment rules:

Definition 6 A Markovian assignment rule α is irreducible if the induced
Markov chain is irreducible (the only recurrent set is the entire state space).
A Markovian assignment rule α is ergodic if the induced Markov chain is
ergodic (has a unique recurrent set).13 A Markovian assignment rule α is
convergent if the induced Markov chain is convergent (admits a unique ab-
sorbing state, and any initial assignment converges to the absorbing state).

Why do we want to study the dynamical properties of Markovian assign-
ment rules? We claim that each of the three properties highlighted above
has important implications on the study of assignment processes. If an as-
signment rule is irreducible, we know that all assignments µ in M will be
visited with positive probability, and can compute the unique invariant dis-
tribution as the left eigenvector of the transition probability matrix satisfying∑

i πi = 1 (Isaacson and Masden (1976), Theorem III.2.2 p. 69). If an assign-
ment rule is ergodic, we know that the Markov chain will settle in a unique
long run behavior irrespective of the initial conditions. If an assignment rule
is convergent, we know that in the long run, all agents will experience the
same sequence of assignments in their lifetime. Convergence is thus related
to the following strong notion of fairness.

Definition 7 An assignment rule is fair if for any two agents i and i′ enter-
ing society at dates t and t′, the assignment rule α generates a deterministic
sequence of assignments such that µt+τ (i) = µt

′+τ (i′) for τ = 0, 1, ..., n− 1.

Clearly, any convergent assignment rule is fair, and if a fair assignment
rule has a unique recurrent set, it must be convergent.

13This definition of ergodicity does not agree with the definition given by Isaacson and
Masden (1976) who also require all recurrent states to be aperiodic, so that an invariant
distribution exists, nor with Kemeny and Snell (1960)for whom a Markov chain is ”ergodic”
if the recurrent set is the entire state space. For lack of better terminology, we call ergodic
a finite Markov chain such that the long run behavior of the chain (whether it is a cycle
or an invariant distribution) is independent of the initial conditions.
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3.3 Convergent Assignment Rules

3.4 Convergent Markovian assignment rules

We start by characterizing convergent assignment rules. Because an agent is
never reassigned an object of lower value than the one he currently holds, the
only candidate for an absorbing state is the identity assignment ι, ι(i) = i
for all i = 1, ...n. It is easy to check that the identity assignment is an
absorbing state for the seniority and rank rules, and that, starting from any
other assignment, the identity assignment is reached in a finite number of
steps.

Proposition 1 Both the seniority and rank assignment rules are convergent.

The seniority and rank rules are not the only convergent rules. A complete
characterization of convergent assignment rules is difficult, because the con-
dition guaranteeing that the identity assignment is absorbing only pins down
the assignment rule for the truncated assignments ν̃j, where ν̃j(i) = i− 1 for
i ≤ j and ν̃j(i) = i for i > j, but does not impose any conditions for other
assignments. However, we can characterize fully the one-parameter family of
independent convergent rules.

Theorem 1 An assignment rule α is independent and convergent if and only
if αj(j − 1) = 1 for all j < n, αn(ν, n) = 1 if ν(n) = n− 1, and there exists
λ ∈ [0, 1] such that αn(ν, n) = λ and αn(ν, ν−1(n−1)) = 1−λ if ν(n) 6= n−1.

Theorem 1 characterizes the family of independent and convergent as-
signment rules as rules which allocate any object j < n according to the
rank rule, and allocate object n according to a convex combination of the
rank and seniority rules. If, in addition, we require the assignment rule to
be strongly independent, if αn(ν, n) = 1 when ν(n) = n − 1, we must have
αn(n− 1) = 1, so that:

Corollary 1 The only strongly independent, convergent assignment rule is
the rank rule.

3.5 Ergodic assignment rules

There is no simple characterization of ergodic assignment rules. The following
condition is a sufficient condition for ergodicity of the Markov chain generated
by an assignment rule.
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Proposition 2 Suppose that αj(j, ν) > 0 whenever ν(j) = j − 1, then the
assignment rule α is ergodic.

In other words, if the assignment rule assigns object j with positive proba-
bility to the agent who holds object j−1, then the assignment rule is ergodic.
The proof of Proposition 2 is based on the following observation. Under the
condition of the Proposition, there exists a path from any assignment µ to
the identity assignment ι, showing that the recurrent set is unique.

The proof of Proposition 2 generalizes the argument used to prove that
the identity assignment ι can be reached from any other assignment using the
rank or seniority rules. Both the rank and seniority rules satisfy the condition
of Proposition 2, as αj(j, ν) = 1 whenever ν(j) = j − 1. Furthermore, if
the condition of Corollary 2 is satisfied, it is possible to reach the identity
assignment ι from itself, so that the period of the recurrent state ι is equal
to one. As all states in a recurrent set must have the same period (Isaacson
and Masden (1976), Theorem II.2.2 p.54), the recurrent set does not admit
any cycle and the Markov chain admits a unique invariant distribution.

The sufficient condition identified in Corollary 2 is not necessary. As the
following four player example shows, a Markovian assignment rule may be
ergodic even when it allows some ”gaps” (situations where the probability of
assigning object j to the agent holding object j − 1 is equal to zero).

Example 2 Let n = 4. Consider the strongly independent assignment rule
α4(3) = 1, α3(1) = 1, α2(1) = 1, α1(0) = 114.

Let all states such that µ(4) = 4 be ordered as in Subsection 2.2. In
addition, define the states:

µ7 : (1, 3, 4, 2)

µ8 : (1, 2, 4, 3)

µ9 : (1, 4, 3, 2)

µ10 : (1, 4, 2, 3) .

Figure 5 illustrates the transitions between these states and shows that
there exists a path leading to the identity matching from any other state,
proving that the assignment rule is ergodic.

14For strongly independent assignment rules, we simplify notations and let αj(i) denote
the probability that the agent who currently holds object i receives object j.
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Figure 5: Transitions between states for Example 2

3.6 Irreducible assignment rules

The characterization of assignment rules generating irreducible Markov chains
is difficult and we provide instead a sufficient condition for irreducibility.

Theorem 2 For any independent assignment rule α, consider the graph
G(α) defined over the nodes {1, 2.., n − 1} by gi,j = 1 if and only if either
αj(i) > 0 or αi(j) > 0. Any independent Markovian assignment rule α such
that αj(0) > 0 for all j ≥ 1, and for which the graph G(α) is connected is
irreducible.

Theorem 2 provides a simple sufficient condition to check whether an
independent assignment rule is irreducible. This condition is satisfied when
the set of states for which transitions occur with positive probability is rich
enough. For example, it is always satisfied for the uniform assignment rule
where αj(i) > 0 for all i ≤ j, or when the probability of assigning object j
to an agent holding j − 1 is positive, αj(j − 1) > 0 (in which case the graph
G(α) is a connected line), or if the probability of assigning object j to the
agent holding object 1 is positive for all j, αj(1) > 0 (in which case the graph
G(α) is a connected star with 1 as the hub).

However, as shown by the following example, the condition is not neces-
sary. There exist irreducible assignment rules for which the graph G(α) is
not connected.
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Example 3 Let n = 4. Consider the strongly independent assignment rule,
α1(0) = 1, α2(0) = 1, α3(0) = α3(1) = 1

2
, α4(0) = α4(1), α4(2) = α4(3) = 1

4
.

In this Example, the graph G(α) only contains the link (1, 3) and is not
connected. However, all assignments with µ(n) = 4 intercommunicate, as
illustrated in Figure 6, which uses the same ordering of three player assign-
ments as that used in Subsection 2.2.

Figure 6: Transitions between states for Example 3

4 Properties of assignment rules in heteroge-

neous societies

4.1 Heterogeneous societies

4.1.1 Agents and matchings

In heterogeneous societies, agents draw independently a productivity k in
the set K = {1, 2, ...,m} according to the probability distribution q(k). This
productivity is drawn by the agents at birth and remains constant over their
lifetime. Agents are now characterized by a pair (i, k) describing their age
and productivity. In heterogeneous societies, the value of the match between
an object and an agent is a function u(j, k) which depends both on the quality
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of the object and the agent’s productivity. We assume that agent’s types are
ordered so that higher productivity agents generate larger surpluses:

u(j, k′) > u(j, k) for all k′ > k,

and that the function u(j, k) is supermodular:

If k′ ≥ k and j′ > j, then u(j′, k′) + u(k, j) ≥ u(j, k′) + u(j′, k),

with strict inequality when k′ > k. Hence, total surplus is maximized when
the matching is assortative, assigning higher objects to agents of higher pro-
ductivity.

In heterogeneous societies, we define a mapping θ : I → K, assigning to
each agent a productivity type, and let T define the set of all those mappings.
Any θ ∈ T defines a type profile for agents in the society. A state is now
described by a pair (µ, θ) inM×T , and a Markovian assignment rule defines
assignment probabilities which depend both on the truncated assignment ν
and on the type profile θ: αj(ν, θ, i).

4.1.2 Efficient assignment rules

When agents are heterogeneous, the total surplus varies with the assignments,
and different assignment rules result in different total surpluses. We define
a notion of efficiency of assignment rules, based on the following criterion.
Let δ ∈ [0, 1) denote the discount factor of the social planner.

Definition 8 An assignment rule α is efficient if it maximizes:

Ek0,....

∞∑
t=0

δt
n∑
i=1

ui(µt(i), θt(i)).

We thus adopt the expected discounted sum of utilities as our efficiency
criterion. Notice that, when δ = 0, this criterion becomes equivalent to the
myopic efficiency criterion, where the assignment rule maximizes the sum of
expected surpluses at every period. However, by the individual rationality
constraint, the assignment at period t imposes constraints on the assignment
of period t + 1, so that the dynamic efficiency criterion we adopt typically
differs from the myopic criterion when δ is positive.
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4.1.3 Quasi-convergent assignment rules

When agents are heterogeneous, an assignment rule generates a Markov chain
over the setM×T . As types are randomly drawn every period, this Markov
chain does not admit absorbing states, and it is clear that assignment rules
are never convergent. However, distinguishing between the two sources of
randomness (one linked to the exogenous draw of the type of the entering
agent every period, and one to the dynamics of reassignments), we propose
the following notion of quasi-convergence

Definition 9 A Markovian assignment rule α is quasi-convergent if the in-
duced Markov chain has a unique recurrent set of nm states S such that, for
any s, s′ in S, θ(s) 6= θ(s′).

In words, a quasi-convergent Markov chain ultimately settles in a recur-
rent state, where a single assignment arises for every type profile θ. When
there is a unique type, this definition is of course equivalent to convergence to
a unique absorbing state. Quasi-convergence is also related to the following
strong notion of fairness:

Definition 10 An assignment rule is fair if for any two agents i and i′ en-
tering society at dates t and t′, any realization of type profiles such that θt+τ =
θt
′+τ for τ = 0, 1, ..., n − 1, the assignment rule α generates a deterministic

sequence of assignments such that µt+τ (i) = µt
′+τ (i′) for τ = 0, 1, ..., n− 1.

This fairness notion extends the definition of fairness in homogeneous
societies, by requiring that two agents born at different times but who live
throughout their entire lifetime in the same societies experience the same
sequence of assignment. As in the case of homogeneous societies, it is easy
to see that fairness and quasi-convergence are equivalent notions when the
Markov chain admits a unique recurrent set.

4.1.4 Type-lexicographic assignment rules

When agents are heterogeneous, an important class of assignment rules are
type-lexicographic rules which assign objects using productivity as the first
criterion.

Definition 11 A Markovian assignment rule α is type-lexicographic if, for
any j, ν and θ, αj(ν, θ, i) > 0⇒ θ(i) ≥ θ(k) ∀k, ν(k) < j.
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The type-seniority and type-rank are two examples of type-lexicographic
rules, which assign objects among agents with the same productivity accord-
ing to seniority and rank respectively:

The type-seniority rule is defined by αj(ν, θ, i) = 1 if θ(i) ≥ θ(k) for all k
such that ν(k) < j and i > l for all l such that θ(l) = θ(i) and ν(l) < j.

The type-rank rule is defined by αj(ν, θ, i) = 1 if θ(i) ≥ θ(k) for all k such
that ν(k) < j and ν(i) > ν(l) for all l such that θ(l) = θ(i) and ν(l) < j.

4.2 Properties of assignment rules in heterogeneous
societies

4.2.1 Independent assignment rules in heterogeneous societies

We first observe that independence places very strong restrictions on assign-
ment rules with heterogeneous agents.

Lemma 2 Let α be an independent assignment rule among heterogeneous
agents. Then, for any θ, θ′, any j, ν and i, αj(ν, θ, i) = αj(ν, θ

′, i).

Lemma 2 is easily proved. Consider two type profiles θ, θ̃ such that θk =
θ̃k for all k 6= i and θi 6= θ̃i. For any j and any ν,

∑
l|ν(l)<j αj(ν, θ, l) =∑

l|ν(l)<j αj(ν, θ̃, l) = 1. By independence, αj(ν, θ, k) = αj(ν, θ̃, k) for any

k 6= i, so that αj(ν, θ, i) = αj(ν, θ̃, i). Applying independence again, this
argument shows that for any type profile θ′ such that θ′(i) = θ̃(i),αj(ν, θ, i) =
αj(ν, θ

′, i).
With heterogeneous players, independence thus limits the set of rules to

those rules which do not depend on agents’ types and satisfy independence
for homogeneous players (e.g. the rank or uniform rules, which do not take
into account players’ types). Lemma 2 thus shows that in heterogeneous
societies, independence and efficiency are incompatible. To illustrate this
point, it suffices to consider a two-type society where agents can either be
of high or low type. In these dichotomic societies, efficient assignment rules
must be type-lexicographic and assign any object to a high type agent when
one is eligible to receive it. This will of course stand in contradiction to in-
dependence, as it implies that the assignment rule takes into account agents’
types.
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4.2.2 Efficient and quasi-convergent assignment rules

We now claim that efficiency and quasi-convergence are incompatible re-
quirements for assignment rules in heterogeneous societies.To understand
this point, consider a society with three possible types, L, M and H. Be-
cause the assignment rule is quasi-convergent, at states where all agents have
the same type, the only candidate assignment is the identity assignment (See
Subsection 3.4). Hence, if the type profile (L, ..., L) is realized, µ(i) = ι.
Similarly, if the type profile (M, ...,M) is realized, µ(i) = ι. Now starting
from (L, ..., L) consider successive changes in the type profiles with the se-
quential entry of one M and n−1 H types. When the M agent enters, if the
discount factor δ or the probability of high types p(H) is sufficiently close to
zero, it is efficient for the social planner to allocate the highest object to the
M agent. In the next period, the entering agent H will be assigned object
n− 1, and the agent H entering in the following period object n− 2. In the
end, in society (H, ..,H,M), agent M will possess object n, and any agent
H of agent i object i.

Suppose instead that n− 1 H agents enter a society composed only of M
agents. By efficiency, when the first H agent enters, he will be assigned object
n, the second object n − 1, etc. In the end, in society (H, ..., H,M), any H
agent of age i will be assigned object i + 1 and the oldest agent of type M
object 1. Hence, a young H agent entering a society (H, ..., H,M) will either
be assigned object 1 or object 2, depending on past history. This argument
shows that the assignment rule is not quasi-convergent and treats differently
two identical agents based on past history. This argument establishes the
following general result.

Theorem 3 Suppose that |K| ≥ 3. There exist probability distributions over
types q and/or discount factors δ such that no assignment rule can simulta-
neously satisfy efficiency and quasi-convergence.

The incompatibility between quasi-convergence and efficiency is a conse-
quence of the individual rationality constraint, which creates a path depen-
dence that prevents the emergence of quasi-convergent rules when efficiency
is satisfied.15 The intuition underlying Theorem 3 relies on the existence of
at least three types. With only two types, efficiency and quasi-convergence
can be satisfied simultaneously.

15If efficiency is not required, quasi-convergent rules exist. For example, the rank and
seniority rules satisfy both quasi-convergence and independence, but not efficiency.
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Theorem 4 Suppose that |K| = 2. The type-rank and type-seniority rules
are both efficient and quasi-convergent.

Theorem 4 indicates that, if one can separate the set of types in dichoto-
mous categories, there exist assignment rules satisfying both criteria of inter-
generational equity (time invariance) and efficiency (static efficiency). The
type-rank and type-seniority rules stand out as simple rules which should be
used to allocate objects in a dichotomous world.

To understand why these rules satisfy efficiency and quasi-convergence,
consider the set S ′ of states s = (µ, θ) such that µ allocates objects according
to a lexicographic criterion, first using an agent’s type, and then his seniority.
(Formally, for all i, j, µ(i) > µ(j) ⇒ θ(i) > θ(j) or θ(i) = θ(j), i > j.) The
type-seniority and type-rank rules have the property that the set S ′ is a
closed set (from any state in S ′, all transitions lead to another state in S ′).
Furthermore, because the probability of any type is positive, there exists a
path between any two states in S ′, which is then a recurrent set. Because the
state sH = (ι, (H,H...H)) belongs to the set S ′, and there exists a path under
the type-seniority and type-rank rules from any state s = (µ, (H,H, .., H))
to sH , and a path from any state to a state where all types are high, there
exists a path from any state s to state sH in S ′, showing that S ′ is the unique
recurrent set of the Markov chain.

The previous argument also highlights why a complete characterization
of efficient and quasi-convergent rules for two types may be difficult. The
argument shows that the transitions are only pinned down for a small number
of states (states in S ′ and states where all agents have high types), and
transitions among other states can be arbitrary. Nevertheless, the important
conclusion is that efficient and quasi-convergent assignment rules exist for two
types, and the type-rank and type-seniority rules emerge as simple, useful
rules to apply in dichotomous settings.16

16Incidentally, in the assignment of high schools to teachers in France, teachers are ac-
tually grouped into two classes (”agrgs” and ”certifis”) reflecting the grades they obtained
in the certification exam).
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5 Extensions and Conclusions

5.1 Extensions

5.1.1 Group entry, cohort size and numbers of objects

In order to derive the properties of dynamic assignment rules, we have as-
sumed that agents enter sequentially, that there are as many objects as
agents, and as many object types as periods in an agent’s life. All these
assumptions could be relaxed without changing the qualitative results of our
analysis. For example, if agents enter in groups and there are more object
types than periods in one agent’s life, all agents will not experience the same
history. However, if one defines the state as the distribution of objects held
by agents of the same cohort, our analysis carries over and we can study
convergence of the Markov chain generated by assignment rules over the ex-
tended state space. Similarly, if there are fewer objects than agents, one
needs to redefine the state as the probability that an agent in a given cohort
receives an object. If there are more objects than agents, one would restrict
attention to the best objects and not assign the worst objects.

5.1.2 Agents’ strategic behavior

In the analysis, we have assumed that agents do not behave strategically
and always accept the object which is assigned to them. Agents could refuse
an assignment for different reasons. If the assignment rule depends on the
current truncated assignment, agents may prefer to wait and obtain a better
object after the assignment of other agents have changed . If the assign-
ment rule is such that agents with better objects have a lower probability
of obtaining objects of higher value, agents may prefer to wait in order to
guarantee that they will eventually obtain the best objects.

Interestingly, the four assignment rules we have focused on (rank, senior-
ity, uniform and replacement rules) are all immune to this strategic behavior.
Because the rank, uniform and replacement rules are independent, agents
have no incentive to wait for the assignment of other agents to change. For
the seniority rule, waiting can never be beneficial either: if an agent is the
most senior eligible agent to receive an object, he will remain the most se-
nior eligible agent independently of the assignment of objects to other agents.
Furthermore, in the rank and seniority rules, an agents’ probability of receiv-
ing object is increasing in the quality of the object held by the agent. In the
uniform and replacement rules, the agents’ probability of receiving an object
is independent of the object currently held. Hence, in all four cases, agents
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have no incentive to wait in order to ”jump” to an object of higher quality.17

5.2 Conclusions

In this paper, we analyze dynamic assignment problems where agents suc-
cessively receive different objects (positions, offices, etc.). A finite set of n
vertically differentiated indivisible objects are assigned to n agents who live
n periods. At each period, a new agent enters society, and the oldest agent
retires, leaving his object to be reassigned. A Markovian assignment rule
specifies the probability that agents receive objects, and generates a finite
Markov chain over the set of assignments. We define independent assignment
rules (where the assignment of an object to an agent is independent of the
objects currently held by the other agents), efficient assignment rules (where
there does not exist another assignment rule with larger expected surplus),
fair assignment rules (where two agents living in equal circumstances experi-
ence the same history) and analyze the dynamical properties of the Markov
chains generated by assignment rules. When agents are homogeneous, we
characterize independent convergent assignment rules. When agents draw at
random their types, we prove that independence and efficiency are incom-
patible, and assignment and quasi-convergent rules only exist for two types.
We characterize two simple rules (type-rank and type-seniority) which satisfy
both equity and efficiency criteria in dichotomous settings.

While our analysis represents a first step in the understanding of dynamic
assignment processes, it is based on a number of simplifying assumptions. As
we discussed above, assumptions on the number of objects and the sizes of
cohorts could be relaxed without changing the analysis. Other assumptions
cannot be so easily dispensed with. First, we have assumed that all agents
have the same preferences over the objects. Allowing for diversity in prefer-
ences would open an entire new set of questions on stability of assignment
rules. Second, we have supposed that agents’ types are perfectly observ-
able. Relaxing this assumption would lead us to study incentive properties
of assignment rules and move closer to the literature on dynamic mecha-
nism design. Finally, we have considered a model where agents enter and
exit in a deterministic way. Studying dynamic assignment mechanisms with
stochastic entry and exit is a challenging task that deserves further study.

17In fact, all independent rules such that αj(i) is weakly increasing in ν(i) will be
immune to strategic behavior on the part of agents.
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7 Proofs

Proof of Lemma 1: in the text.

Proof of Proposition 1: We first check that the identity assignment is
indeed an absorbing state. A necessary and sufficient condition for this to
occur is that: ∏

j

αj(ν̃
j, j) = 1, (2)

where ν̃j(i) = i− 1 for i ≤ j and ν̃j(i) = i for i > j.
Both the seniority and rank assignment rules satisfy this condition, as j

is at the same time the oldest agent eligible to receive object j and the agent
with the highest ranked object in the matching ν̃j.

Next we show that starting from any initial state µ, there exists a time t
at which the Markov chain is absorbed into the identity assignment ι.

In the rank rule, if µ(n) = k, all objects j = 1, 2, ..., k are reassigned to
the agents sequentially. In particular, at period 1, object 1 will be reassigned
to the entering agent. At period 2, object 2 is reassigned to agent 2 (who
currently holds object 1) and object 1 is reassigned to the entering agent.
Following this argument, is it easy to see that the Markov chain will be
absorbed into the identity assignment in at most n periods.

In the seniority rule, notice that the entering agent receives object 1 with
probability 1. As for the rank rule, this implies that, starting from any
assignment, in period 1, agent 1 holds object 1 ; in period 2, agent 2 holds
object 2 and agent 1 object 1, etc. The identity assignment is reached in at
most n steps.

Proof of Theorem 1: By Proposition 1, the rank rule and the seniority
rules are convergent, so that the rule α, which is a convex combination of
the seniority and rank rules, is also convergent.

Next suppose that the rule α satisfies independence and is convergent.
Because it is convergent, the identity assignment is an absorbing state, so
that

αj(ν̃j, j) = 1.

By independence, from Lemma 1, αj(j − 1) = αj(ν̃j, j) = 1 for all j < n.
Furthermore, by independence again, from Lemma 1, for any two assignments
ν, ν ′ which only differ in the position of two agents, the total probability of
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assigning object n to the two agents is constant. As αn(ν̃n, n)+αn(ν̃n, k) = 1
for all k < n, we conclude that, for all ν,

αn(ν, n) + αn(ν, ν−1(n− 1)) = 1.

Next construct two different truncated assignments ν and ν ′ such that
ν−1(n) = i, ν ′−1 = j and ν−1(n − 1) = ν ′n−1(n − 1) = k. By independence,
αn(ν, ν−1(n−1)) = αn(ν ′, ν ′−1(n−1)) so that αn(ν, n) = αn(ν ′, n). Applying
independence again, for any ν, ν ′ such that ν(n) = i < n − 1 and ν ′(n) =
j < n− 1, we have:

αn(ν, n) = αn(ν ′, n) = λ,

so that

αn(ν, ν−1(n− 1)) = 1− λ

for any ν such that ν(n) 6= n− 1, establishing the result.

Proof of Proposition 2: Consider any assignment µ. We will show the ex-
istence of a path to the identity assignment ι. Because object 1 is reassigned
at least every n periods, the Markov chain will eventually reach an assign-
ment µ1 where µ1(1) = 1. will be reassigned and, by the condition in the
Proposition, there is a positive probability that all objects j = 1, 2, ..., µ1(n)
will be reassigned to the agents holding object j − 1 for j ≥ 1 and object
1 to the entering agent. There is thus a new assignment µ2 with µ2(1) = 1
and µ2(2) = 2 which can be reached with positive probability. Repeating the
argument, we reach the identity assignment ι in at most n steps.

Proof of Theorem 2: We prove the existence of a path from any assignment
to any assignment. First notice that, in at most n steps, the Markov chain
will reach an assignment µ where µ(n) = n. Furthermore, as αj(1) > 0, any
assignment can be reached from some assignment µ′ where µ′(n) = n in at
most n steps by successively assigning the good held by the retiring agent to
the entering agent. Hence, in order to prove the theorem, it suffices to prove
that there exists a path from any assignment µ such that µ(n) = n to any
assignment µ′ such that µ′(n) = n.

Consider two such assignments, and let π = µ′ ◦ µ−1 be the permutation
over the set of objects J such that µ′(i) = π[µ(i)] for all i. Notice that π
leaves the last object invariant, π(n) = n. Recall that a transposition τij
is a bijective mapping on some index set such that τij(i) = j, τij(j) = i
and τij(k) = k for all k 6= i, j. The permutation π can be decomposed as
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a product of transpositions, and we let i1, i2, .., iQ denote the sequence of
transpositions such that

π = τiQiQ−1 ◦ ... ◦ τi2i1 .

We now exhibit a path from µ to τi2i1 ◦ µ. As transpositions are symmetric,
we can assume without loss of generality that i1 > i2. Because the graph
G(α) is connected, there exists a sequence j1 = i1, ..., jt, ..., jT = i2 such that
αjt(jt−1) > 0 for all t = 2, ..., T . We can decompose the transposition τi2,i1
as:

τi1,i2 = τj1,j2 ◦ ... ◦ τjT−2jT−1 ◦ τjT−1jT ◦ τjT−2jT−1 ◦ ....τj1j2
≡ χ

To check this equality, notice that, for any i not included in the sequence
jt, τi1,i2(i) = i = χ(i). Furthermore,

τjT−1jT ◦ τjT−2jT−1 ◦ ....τj1j2(i1) = i2,

τj1,j2 ◦ ... ◦ τjT−2jT−1(i2) = i2,

so that χ(i1) = i2. Similarly,

τjT−2jT−1 ◦ ....τj1j2(i2) = i2,

τj1,j2 ◦ ... ◦ τjT−2jT−1 ◦ τjT−1jT (i2) = i1,

so that χ(i2) = i1. Finally, for any jt 6= i1, i2 in the sequence,

τjT−2jT−1 ◦ ....τj1j2(jt) = jt−1,

τj1,j2 ◦ ... ◦ τjT−2jT−1 ◦ τjT−1jT (jt−1) = jt,

so that χ(jt) = jt. We now construct a path from µ to τj1j2 ◦ µ. First,
consider giving the object of the retiring agent to the entering agent until
you reach an assignment where agent n holds object j1. Consider then the
reassignment where j1 is assigned to the agent holding j2 and j2 is assigned
to the entering agent. Continue assigning the object of the retiring agent to
the entering agent until agent n holds object n. In the new assignment, the
agent who held object j1 now holds object j2 ; the agent who held object
j2 now holds object j1, and all other agents i still hold the same object
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µ(i) 6= j1, j2. Hence, the new assignment is τj1j2 ◦ µ. This construction can
be repeated to generate a path from µ to τi2i1 ◦ µ, and then to π ◦ µ = µ′,
concluding the proof of the Theorem.

Proof of Lemma 2: in the text.

Proof of Theorem 3: in the text.

Proof of Theorem 4: Consider the set S ′ = {s = (µ, θ)|∀i, jµ(i) > µ(j)⇒
θ(i) > θ(j) or θ(i) = θ(j) and i > j}. This is the set of states where objects
are allocated according to a lexicographic criterion, using first an agent’s type
and then her seniority. Consider a state s = (µ, θ) in S ′. We characterize the
transitions induced by the type-rank and type seniority rules. Let ≺ denote
the type-lexicographic ordering among agents at θ′, the type profile obtained
after agent n has left and a new agent has entered. Let m be the rank of the
new agent in that ordering. We need to distinguish between different cases.
First, suppose that θ(n) = H so that µ(n) = n. Then objects n, n−1,..,n−m
will be reassigned sequentially to all agents according to the lexicographic
ordering. The new assignment µ′ then respects the type-seniority ordering.
If, on the other hand θ(n) = L, and µ(n) = k, object k will either be assigned
to the entering agent (if he has a high type), or to the oldest agents of low
type, inducing a chain of reassignments of objects 1, 2, ...k among agents of
low type. In both cases, the resulting assignment µ also respects the type-
seniority ordering. Hence, from any state s in S ′, the Markov chain induced
by the type-seniority and type-rank rules results in a new state in S ′, showing
that S ′ is a closed set.

Next, note that because the probability of high and low types is pos-
itive, for any θ, θ′, there exist states s = (µ, θ) and s′ = (µ′, θ′), with
p(s′|s) > 0. This shows that all states in S ′ intercommunicate, and S ′ is
a recurrent set. Finally, using the argument of Proposition 1, from any state
s′ = (µ, (H,H,H, ...H)), there exists a path to sH = (ι, (H,H, ..., H)). For
any state s, there exists a path to a state s′ where all agents have high type.
Hence, there exists a path from any state s to sH (and then to any state in
S ′), showing that S ′ is a unique recurrent set. As it contains exactly one state
per type profile, we conclude that the type-rank and type-seniority rules are
quasi-convergent.
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